兆瓦級風機主軸軸承接觸應力與疲勞壽命分析
本文選題:風機 + 主軸軸承; 參考:《太原理工大學》2017年碩士論文
【摘要】:風電行業(yè)的快速發(fā)展促進了風電專用軸承行業(yè)的發(fā)展,近年來我國在風電專用軸承的設(shè)計與制造上已經(jīng)取得了很大進步。但是,在風電軸承的壽命、承載能力以及可靠性等方面,與世界先進水平還存在很大差距。風機主軸軸承是一種風電專用軸承,目前國內(nèi)對風機主軸軸承接觸應力與疲勞壽命的研究還不夠深入。本文以某兆瓦級風力發(fā)電機主軸軸承為研究對象,對該軸承進行接觸應力與疲勞壽命研究,分析影響軸承接觸應力與疲勞壽命的因素,探究提高主軸軸承承載能力與疲勞壽命的方法,為風機主軸軸承的設(shè)計與制造提供一定的參考。論文的主要研究內(nèi)容如下:1)在合理簡化風機模型的基礎(chǔ)上,分析載荷作用下主軸軸承的力學特性,計算出主軸軸承在額定風速下的受力,其中軸承所受徑向力為653660N、軸向力為33643N。載荷計算結(jié)果可為后續(xù)軸承接觸應力與疲勞壽命的研究提供依據(jù)。2)基于ANSYS有限元分析平臺對建立的主軸軸承靜力學模型進行接觸應力分析,求解出軸承內(nèi)外圈滾道在額定風速下的應力分布情況,確定出最下端滾子與軸承內(nèi)圈接觸處為軸承的危險受載位置。進一步分析了游隙、接觸角對軸承接觸應力的影響,得出了適當?shù)呢撚蜗兑约拜^小的接觸角可以提高主軸軸承承載能力的結(jié)論,可根據(jù)此對主軸軸承進行結(jié)構(gòu)優(yōu)化。3)基于Fe-safe疲勞壽命軟件對主軸軸承在額定風速下的疲勞壽命進行計算,壽命結(jié)果滿足風機20年額定設(shè)計壽命的要求。為了使主軸軸承能夠在更為惡劣的工況下滿足使用壽命的要求,進一步探討了軸承表面粗糙度以及軸承制造殘余壓應力對其壽命的影響,計算出主軸軸承在不同表面粗糙度與不同殘余壓應力下的疲勞壽命。研究結(jié)果表明,提高主軸軸承表面粗糙度質(zhì)量以及在軸承內(nèi)外圈滾道表層引入有利的殘余壓應力,都可以極大程度地提高主軸軸承的疲勞壽命。本文的研究內(nèi)容可為風機主軸軸承的設(shè)計與制造提供適當?shù)膮⒖?并對提高主軸軸承性能以及整個風機的發(fā)電效率有一定的指導意義。
[Abstract]:The rapid development of wind power industry has promoted the development of wind power special bearing industry. In recent years, great progress has been made in the design and manufacture of wind power special bearings in China. However, the bearing life, bearing capacity and reliability of wind power bearings are still far from the advanced level in the world. Fan spindle bearing is a special bearing for wind power. At present, the research on contact stress and fatigue life of fan spindle bearing is not deep enough. In this paper, the contact stress and fatigue life of a main shaft bearing of a megawatt wind turbine are studied, and the factors influencing the contact stress and fatigue life of the bearing are analyzed. The method of improving bearing capacity and fatigue life of spindle bearing is explored to provide some reference for the design and manufacture of fan spindle bearing. The main contents of this paper are as follows: (1) on the basis of reasonably simplifying the fan model, the mechanical properties of spindle bearing under load are analyzed, and the force of spindle bearing under rated wind speed is calculated, in which the radial force and axial force are 653660N and 33643N respectively. The results of load calculation can provide the basis for the study of contact stress and fatigue life of subsequent bearing. 2) based on ANSYS finite element analysis platform, the contact stress analysis of the static model of spindle bearing is carried out. The stress distribution of the inner and outer ring raceway of the bearing under the rated wind speed is solved, and the dangerous loading position of the bearing is determined at the contact point between the bottom roller and the inner ring of the bearing. The influence of clearance and contact angle on bearing contact stress is further analyzed. It is concluded that proper negative clearance and small contact angle can improve bearing capacity of spindle bearing. Based on this, the fatigue life of spindle bearing under rated wind speed can be calculated based on Fe-safe fatigue life software, and the life result can meet the requirement of 20 years' rated design life of fan. In order to satisfy the service life requirement of spindle bearing under worse working conditions, the influence of bearing surface roughness and residual compressive stress on its service life is further discussed. The fatigue life of spindle bearing under different surface roughness and different residual compressive stress is calculated. The results show that the fatigue life of spindle bearings can be greatly improved by improving the surface roughness of spindle bearings and introducing favorable residual compressive stresses on the surface of the inner and outer ring raceways of bearings. The research content of this paper can provide an appropriate reference for the design and manufacture of the main shaft bearing of the fan, and has certain guiding significance to improve the performance of the spindle bearing and the power generation efficiency of the whole fan.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH133.3;TM315
【參考文獻】
相關(guān)期刊論文 前10條
1 劉曉初;陳凡;何銓鵬;馮明松;姬武勛;;GCr15軸承鋼超高速磨削表面粗糙度與燒傷試驗分析[J];組合機床與自動化加工技術(shù);2016年09期
2 王芳榮;鄧方林;;某型軸承潤滑脂在雙饋風力發(fā)電機潤滑器上的適應性研究[J];電工文摘;2016年03期
3 徐鶴琴;汪久根;王慶九;;滾動軸承疲勞壽命的影響因素[J];軸承;2016年05期
4 李昭昆;雷建中;徐海峰;俞峰;董瀚;曹文全;;國內(nèi)外軸承鋼的現(xiàn)狀與發(fā)展趨勢[J];鋼鐵研究學報;2016年03期
5 薄鑫濤;;熱處理對軸承鋼壽命的影響[J];熱處理;2016年01期
6 葉振環(huán);劉占生;王黎欽;;基于疲勞壽命的角接觸球軸承結(jié)構(gòu)參數(shù)優(yōu)化分析[J];機械傳動;2016年01期
7 姚周衛(wèi);林利茹;魯世安;;特大型調(diào)心滾子軸承裝配工藝改進[J];軸承;2015年12期
8 楊國來;鄧龍;王建忠;張東東;;液壓風力發(fā)電系統(tǒng)設(shè)計及仿真[J];機床與液壓;2015年21期
9 劉先正;王興成;溫家良;于坤山;;風力發(fā)電機組動力學建模與分析[J];電力系統(tǒng)自動化;2015年05期
10 王文生;趙璐;黃勇;束玉寧;朱漢朝;;基于局部應力應變法的高周疲勞壽命預測[J];軌道交通裝備與技術(shù);2015年01期
相關(guān)博士學位論文 前1條
1 楊超;風電機組動態(tài)載荷特性及主動抑制策略研究[D];重慶大學;2015年
相關(guān)碩士學位論文 前7條
1 王長雨;壓鑄鎂合金雙面激光沖擊強化殘余應力和拉伸性能研究[D];江蘇大學;2016年
2 盧東海;基于ANSYS的導管架式海上風力發(fā)電機組支撐結(jié)構(gòu)分析[D];華北電力大學(北京);2016年
3 鄭傳棟;滾動軸承滾道精研加工殘余應力的研究[D];山東大學;2015年
4 何沖;風電偏航軸承接觸應力分析與疲勞壽命研究[D];燕山大學;2014年
5 王秀文;MW級風電機組偏航系統(tǒng)結(jié)構(gòu)動力學仿真分析研究[D];重慶大學;2013年
6 翟保超;大型風電機組主軸軸承故障分析及疲勞壽命數(shù)值模擬[D];燕山大學;2011年
7 劉傳劍;軸承強化研磨加工有限元仿真分析及設(shè)備研制[D];廣州大學;2011年
,本文編號:1802684
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1802684.html