金屬橡膠剛?cè)釓?fù)合齒輪副結(jié)構(gòu)設(shè)計(jì)及動(dòng)力學(xué)分析
本文選題:金屬橡膠 + 復(fù)合齒輪副 ; 參考:《重慶大學(xué)》2015年碩士論文
【摘要】:本文研究工作得到了軍品配套項(xiàng)目“xxx齒輪傳動(dòng)裝置的研制”的資助。隨著軍事設(shè)備的快速發(fā)展,對(duì)減速器的可靠性和傳動(dòng)精度提出了更高要求。橡膠合金濾波減速器是重慶大學(xué)王家序教授針對(duì)軍事設(shè)備的使用性能和傳統(tǒng)減速器的突出問(wèn)題,發(fā)明的一種高可靠、輕量化的精密少齒差行星減速器。但是橡膠合金作為一種非金屬基體材料,強(qiáng)度剛度不如金屬材料,高低溫性能較差,這在一定程度上阻礙了濾波減速器的推廣應(yīng)用。而金屬橡膠材料可在-70℃~300℃穩(wěn)定可靠的工作,其力學(xué)性能不會(huì)發(fā)生較大改變。本文以復(fù)合齒輪副為研究對(duì)象,采用金屬橡膠材料作為彈性體,結(jié)合變形協(xié)調(diào)設(shè)計(jì)理論,對(duì)其結(jié)構(gòu)參數(shù)和工藝形式開(kāi)展了研究。論文的主要內(nèi)容如下:①基于金屬橡膠材料的壓縮性能和阻尼性能特點(diǎn),結(jié)合變形協(xié)調(diào)理論,建立了一套關(guān)于金屬橡膠復(fù)合齒輪副的完整結(jié)構(gòu)設(shè)計(jì)計(jì)算流程。該設(shè)計(jì)流程中以金屬橡膠材料的相對(duì)密度作為重要變量,從復(fù)合齒輪副的扭轉(zhuǎn)剛度、啟動(dòng)摩擦力矩和動(dòng)力學(xué)性能兩條路徑進(jìn)行求解。對(duì)比驗(yàn)證兩種方法所得結(jié)果沒(méi)有明顯沖突之后,總結(jié)得到金屬橡膠復(fù)合齒輪的加工參數(shù)。考慮到前述計(jì)算存在的誤差,為了驗(yàn)證計(jì)算的合理性并方便對(duì)比實(shí)驗(yàn),設(shè)計(jì)了5組不同間隙?r和不同相對(duì)密度的金屬橡膠復(fù)合齒輪副。②在初期設(shè)計(jì)中便引入動(dòng)力學(xué)分析以指導(dǎo)并優(yōu)化設(shè)計(jì)工作。將支撐軸承、傳動(dòng)軸和金屬橡膠彈性體等效為支撐剛度和阻尼元件,采用無(wú)摩擦的齒輪副嚙合模型,按照集中質(zhì)量法建立一對(duì)金屬橡膠復(fù)合齒輪副三個(gè)構(gòu)件6個(gè)自由度的非線性振動(dòng)模型。對(duì)上述微分非線性方程組進(jìn)行降階,利用Matlab編程求解。之后采用粒子群算法,以金屬橡膠彈性體等效剛度、阻尼為自變量,復(fù)合齒輪副振動(dòng)響應(yīng)為約束,振動(dòng)加速度RMS值最小為目標(biāo)開(kāi)展多目標(biāo)優(yōu)化工作。并將結(jié)果代入前述流程進(jìn)行下一步求解。③針對(duì)復(fù)合齒輪副的結(jié)構(gòu),利用Abaqus軟件開(kāi)展高低溫環(huán)境下復(fù)合齒輪副的有限元熱變形分析。之后從齒輪副傳動(dòng)精度與可靠性入手,在綜合考慮齒厚誤差、齒輪徑向跳動(dòng)、傳動(dòng)軸偏心誤差、支撐軸承徑向游隙和前述熱變形分析結(jié)果的基礎(chǔ)上,對(duì)復(fù)合齒輪副開(kāi)展變形協(xié)調(diào)設(shè)計(jì)。經(jīng)計(jì)算得到常溫時(shí)復(fù)合齒輪副的預(yù)緊量,并根據(jù)低溫時(shí)的傳動(dòng)精度和高溫時(shí)的傳動(dòng)可靠性要求進(jìn)行驗(yàn)算。結(jié)果表明,5組復(fù)合齒輪副的預(yù)緊量既能夠保證低溫時(shí)的回差要求,也能保證高溫時(shí)復(fù)合齒輪齒圈與輪轂留有一定間隙,保證齒輪副不發(fā)生卡澀、卡死的故障。④針對(duì)金屬橡膠材料的成型工藝,并結(jié)合前述計(jì)算結(jié)果,設(shè)計(jì)出一整套復(fù)合齒輪金屬橡膠彈性體的沖壓成型模具。創(chuàng)造性的提出利用復(fù)合齒輪的齒圈和輪轂作為沖壓模具型腔的一部分,使成型的金屬橡膠彈性體不再需要裝配。⑤利用已完成加工的2#復(fù)合齒輪和多功能傳動(dòng)摩擦實(shí)驗(yàn)臺(tái)開(kāi)展了部分實(shí)驗(yàn)。通過(guò)對(duì)比實(shí)驗(yàn),表明金屬橡膠復(fù)合齒輪副的振動(dòng)明顯小于傳統(tǒng)金屬齒輪副。同時(shí)開(kāi)展了不同中心距下復(fù)合齒輪副的測(cè)試工作,結(jié)果表明隨著預(yù)緊量增加,齒面摩擦加劇,復(fù)合齒輪副摩擦力矩逐漸增大,振動(dòng)加速度則呈先下降后上升的趨勢(shì)。
[Abstract]:The research work of this paper is supported by the development of the XXX gear transmission for the military equipment. With the rapid development of the military equipment, the reliability and transmission precision of the reducer are higher. The rubber alloy filter reducer is the use performance of the professor Wang family in Chongqing University and the traditional reducer for military equipment. A high reliability and lightweight planet reducer with small tooth difference is invented. However, as a non-metallic matrix material, the strength stiffness of rubber alloy is not as good as metal material, and the performance of high and low temperature is poor. This hinders the popularization of the filter retarder to a certain extent. And the metal rubber material can be stable and reliable at -70 C ~300 C. In this paper, the mechanical properties of the compound gear pair will not be changed greatly. This paper takes the compound gear pair as the research object, uses the metal rubber material as the elastic body, combined with the deformation coordination design theory, and studies its structural parameters and process forms. The main contents of the thesis are as follows: (1) the compression performance and damping properties of the metal rubber materials are based on the main contents of the paper. Based on the deformation coordination theory, a set of complete structure design and calculation process of metal rubber compound gear pair is set up. In this design process, the relative density of metal rubber material is regarded as an important variable, and the two paths are solved from the torsional stiffness of the compound gear pair, the starting friction moment and the dynamic performance. Comparison and verification of the two kinds of gear pairs is made. After the results have no obvious conflict, the processing parameters of the metal rubber compound gear are summed up. Considering the errors in the previous calculation, in order to verify the reasonableness of the calculation and facilitate the comparison experiment, 5 groups of metal rubber compound gear pairs with different gaps, R and different relative density, are designed. In order to guide and optimize the design work, the supporting bearing, the transmission shaft and the metal rubber elastomer are equivalent to the support stiffness and damping element, and the friction free gear pair meshing model is used to establish the nonlinear vibration model of the 6 degrees of freedom of the three components of a pair of metal rubber compound gear pairs according to the centralized mass method. The equations of sexual equations are reduced and solved by Matlab programming. Then the particle swarm optimization is used to carry out multi-objective optimization work with the equivalent stiffness of metal rubber elastomer, damping as independent variable, vibration response of the compound gear pair as the constraint, and the minimum vibration acceleration RMS value as the target. With the structure of the gear pair, the finite element thermal deformation analysis of the compound gear pair under high and low temperature environment is analyzed by Abaqus software. Then, on the basis of the accuracy and reliability of the gear pair transmission, on the basis of the comprehensive consideration of the tooth thickness error, the radial runout of the gear, the eccentric error of the transmission shaft, the supporting bearing radial clearance and the analysis result of the previous thermal deformation. The deformation coordination design of the gear pair is carried out. The pre tightening amount of the compound gear pair at normal temperature is calculated and checked according to the transmission accuracy at low temperature and the transmission reliability requirements at high temperature. The results show that the pre tightness of the 5 groups of compound gear pairs can not only guarantee the return difference at low temperature, but also ensure the compound gear ring and the gear ring at high temperature. There is a certain gap in the wheel hub to ensure that the gear pair does not get stuck and die. (4) a complete set of stamping moulds for the metal rubber elastomer of compound gear are designed according to the forming process of metal rubber material and the results mentioned above. Part of the formed metal rubber elastomer no longer needs to be assembled. 5. Some experiments have been carried out by using the finished 2# composite gear and the multi-function transmission friction test bench. The comparison experiment shows that the vibration of the metal rubber compound gear pair is obviously smaller than that of the traditional metal gear pair. At the same time, the compound gear with different center distance is carried out. The results show that with the increase of pretension, the friction of the tooth surface increases, the friction torque of the compound gear pair increases and the vibration acceleration decreases and then rises.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH132.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 幸華超;樊文欣;;金屬橡膠材料的研究綜述[J];汽車零部件;2013年11期
2 陳亞;白鴻柏;路純紅;;金屬橡膠制造應(yīng)用及產(chǎn)品標(biāo)準(zhǔn)化的構(gòu)建[J];現(xiàn)代制造工程;2014年05期
3 姜洪源,夏宇宏,敖宏瑞,A.M.Уланов;金屬橡膠構(gòu)件的性能分析與實(shí)驗(yàn)研究[J];中國(guó)機(jī)械工程;2001年11期
4 夏宇宏,姜洪源,敖宏瑞,李瑰賢;簧絲走向?qū)饘傧鹉z構(gòu)件性能的影響分析[J];中國(guó)機(jī)械工程;2002年10期
5 敖宏瑞,夏宇宏,姜洪源,王樹(shù)國(guó),A.M.Ulanov;二維載荷作用對(duì)金屬橡膠干摩擦阻尼性能的影響[J];機(jī)械設(shè)計(jì)與制造;2002年05期
6 李宇明;彭威;白鴻柏;鄭堅(jiān);;炮用金屬橡膠與橡膠緩沖件的性能對(duì)比分析[J];火炮發(fā)射與控制學(xué)報(bào);2002年04期
7 馬艷紅,郭寶亭,朱梓根;金屬橡膠材料靜態(tài)特性的研究[J];航空動(dòng)力學(xué)報(bào);2004年03期
8 彭威,白鴻柏,鄭堅(jiān),唐西南;金屬橡膠材料阻尼測(cè)試的一個(gè)新方法[J];實(shí)驗(yàn)力學(xué);2004年03期
9 許建東,郭寶亭,朱梓根,李其漢;金屬橡膠材料的振動(dòng)特性[J];航空動(dòng)力學(xué)報(bào);2004年05期
10 ;國(guó)家自然科學(xué)基金重點(diǎn)資助項(xiàng)目成果簡(jiǎn)介金屬橡膠——普通橡膠的最佳替代品[J];機(jī)械工程學(xué)報(bào);2004年12期
相關(guān)會(huì)議論文 前5條
1 左宏;白鴻柏;;金屬橡膠材料微觀變形的物理機(jī)制[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
2 高笛;馬艷紅;洪杰;;毛坯尺寸對(duì)金屬橡膠結(jié)構(gòu)和性能的影響[A];第11屆全國(guó)轉(zhuǎn)子動(dòng)力學(xué)學(xué)術(shù)討論會(huì)(ROTDYN2014)論文集(上冊(cè))[C];2014年
3 李宇燕;黃協(xié)清;;金屬橡膠材料的本構(gòu)關(guān)系及動(dòng)力學(xué)特性研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
4 黃曉瓊;李瑩;張瑾瑾;趙子龍;;非線性因素對(duì)金屬橡膠減振系統(tǒng)幅頻特性的影響[A];力學(xué)與工程應(yīng)用(第十三卷)[C];2010年
5 馬艷紅;王嬋;張大義;洪杰;;基于MR新型結(jié)構(gòu)振動(dòng)主動(dòng)控制數(shù)值仿真研究[A];第11屆全國(guó)轉(zhuǎn)子動(dòng)力學(xué)學(xué)術(shù)討論會(huì)(ROTDYN2014)論文集(上冊(cè))[C];2014年
相關(guān)重要報(bào)紙文章 前5條
1 ;美國(guó)科學(xué)家發(fā)明能導(dǎo)電的金屬橡膠[N];今日信息報(bào);2004年
2 張仲;510所民品以金屬橡膠制品拓市場(chǎng)[N];中國(guó)航天報(bào);2005年
3 云杉;“金屬橡膠”引領(lǐng)材料科技革命[N];中國(guó)礦業(yè)報(bào);2004年
4 云杉;誰(shuí)集軟硬于一身[N];科技日?qǐng)?bào);2004年
5 記者 毛明江;金屬橡膠隨股市大漲 基本面難言反轉(zhuǎn)[N];上海證券報(bào);2013年
相關(guān)博士學(xué)位論文 前2條
1 國(guó)亞?wèn)|;金屬橡膠液體過(guò)濾特性及試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2010年
2 武國(guó)啟;金屬橡膠材料吸聲降噪特性及試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 郭秦卿;金屬橡膠干摩擦阻尼隔振系統(tǒng)理論建模及算法研究[D];西安工業(yè)大學(xué);2015年
2 徐濤;金屬橡膠剛?cè)釓?fù)合齒輪副結(jié)構(gòu)設(shè)計(jì)及動(dòng)力學(xué)分析[D];重慶大學(xué);2015年
3 李雨蕾;金屬橡膠減振及密封構(gòu)件的設(shè)計(jì)與應(yīng)用[D];哈爾濱工程大學(xué);2013年
4 魏浩東;金屬橡膠構(gòu)件抗沖擊性能的理論及實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2007年
5 武國(guó)啟;金屬橡膠吸聲降噪性能分析及研究[D];哈爾濱工業(yè)大學(xué);2006年
6 韓雙鳳;金屬橡膠材料性能試驗(yàn)分析及評(píng)價(jià)研究[D];中北大學(xué);2014年
7 付翠亭;金屬橡膠孔隙結(jié)構(gòu)與導(dǎo)熱性能關(guān)系研究[D];中國(guó)石油大學(xué)(華東);2013年
8 遲旭;金屬橡膠阻尼器隔振性能理論及實(shí)驗(yàn)研究[D];東北石油大學(xué);2011年
9 梁倩倩;金屬橡膠螺旋卷成型工藝及機(jī)構(gòu)研究[D];西安工業(yè)大學(xué);2014年
10 高艷文;圓柱形金屬橡膠構(gòu)件過(guò)濾性能研究[D];哈爾濱工業(yè)大學(xué);2008年
,本文編號(hào):1786038
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1786038.html