天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 機電工程論文 >

軸流式通風機數(shù)值模擬及氣動噪聲分析

發(fā)布時間:2018-04-17 07:17

  本文選題:軸流式通風機 + 內(nèi)部流場 ; 參考:《東北石油大學》2017年碩士論文


【摘要】:風機主要是用于輸送氣體的葉輪機械,被廣泛應用于國民經(jīng)濟的各個生產(chǎn)部門,尤其是在礦山、冶金、石油、化工、航天航空、船舶機械、能源以及車輛工程等領(lǐng)域。由于石油化工涉及的氣體往往是有毒、易燃、易爆的介質(zhì),對通風機的要求就更加苛刻,必須在結(jié)構(gòu)、操作條件和安全防范措施方面保障通風機運行安全可靠。因此改善風機內(nèi)部流場分布、提高風機P-Q性能以及降低風機氣動噪聲逐漸受到廣大學者的重視。本文的研究對象為軸流式通風機,采用商用計算流體軟件FLUENT14.5對該軸流式通風機的內(nèi)部流場進行數(shù)值計算,分析不同葉輪轉(zhuǎn)速下風機內(nèi)部流場分布變化規(guī)律,以及風機性能曲線變化規(guī)律;采用相同的數(shù)值計算方法分析存在分流葉片時風機內(nèi)流場分布,并分析不同分流葉片尺寸對軸流式通風機內(nèi)部流場分布影響。軸流式通風機在運行過程中往往伴隨著強烈的噪聲,其主要有兩部分組成:一是由于風機葉輪旋轉(zhuǎn)時葉片產(chǎn)生周期噪聲;二是由于空氣流過葉輪流道時,出現(xiàn)附面層分離和尾跡流現(xiàn)象而產(chǎn)生的空氣渦流擾動噪聲。本文采用Lighthill聲比擬法,并結(jié)合LES和FW-H混合模型,對該軸流式通風機進行三維非定常流動噪聲數(shù)值求解,得出葉輪轉(zhuǎn)速對風機噪聲頻譜分布及總聲壓級值的影響;并分析分流葉片對風機噪聲頻譜分布及總聲壓級值的影響。為今后軸流式通風機結(jié)構(gòu)設(shè)計以及風機降噪處理提供理論依據(jù)。通過數(shù)值計算表明,風機葉輪的壓力面靜壓遠高于吸力面靜壓,壓力面靜壓為正壓,而吸力面靜壓為負壓,這是葉輪做功的標志;氣流經(jīng)軸流式通風機葉輪做功,其速度沿軸向方向逐漸增大,動能也隨之提高;而靜壓沿軸向方向逐漸減小,靜壓能轉(zhuǎn)化為氣體動能。另外,由于葉輪尾部邊界流動受到橫向壓力作用,使氣流產(chǎn)生平行于邊界的偏移,從而在風機葉輪尾部產(chǎn)生二次渦流。當存在分流葉片時,氣體流經(jīng)分流流道,靜壓能轉(zhuǎn)為氣體動能,氣體流速增大而靜壓降低;隨著分流葉片尺寸變窄,與葉輪之間的流道變寬,氣體流速降低而靜壓再次升高;另外,分流葉片可使風機內(nèi)靜壓分布更加均勻,減少壓力脈動,從而有效抑制了氣體與葉輪吸力面的流動分離現(xiàn)象;也可削弱葉輪尾部邊界流動受橫向壓力作用而引起的二次流,大大改善葉輪末端尾流擾動。風機入口處的總聲壓級值較低,其主要是葉輪旋轉(zhuǎn)引起葉片附近氣流擾動的旋轉(zhuǎn)噪聲;而風機出口處總聲壓級值較高,其處于葉輪尾跡流和分離脫渦流動區(qū)域,渦流擾動強烈,在旋轉(zhuǎn)噪聲的基礎(chǔ)上疊加渦流噪聲。另外,分流葉片可降低氣體在風機流道內(nèi)的流阻,使葉輪吸力面低能區(qū)靜壓上升,減少脫渦流的產(chǎn)生并沖刷葉輪末端二次尾流,從而降低渦流噪聲;若分流葉片尺寸過短,葉輪吸力面附近靜壓較無分流葉片時低,增強風機流道內(nèi)的分離損失,葉輪吸力面脫渦嚴重,渦流噪聲增強。
[Abstract]:Fan is mainly used for conveying gas impeller machinery, which is widely used in various production sectors of the national economy, especially in mining, metallurgy, petroleum, chemical, aerospace, marine machinery, energy and vehicle engineering and other fields.Since the gases involved in petrochemical industry are often toxic, flammable and explosive medium, the requirements for ventilators are more stringent. It is necessary to ensure the safe and reliable operation of ventilators in terms of structure, operating conditions and safety precautions.Therefore, to improve the flow field distribution, to improve the performance of the fan P-Q and to reduce the fan aerodynamic noise has been paid more and more attention by many scholars.The research object of this paper is axial flow fan. The internal flow field of axial flow fan is numerically calculated by commercial computational fluid software FLUENT14.5, and the variation law of flow field is analyzed under different impeller speed.With the same numerical calculation method, the distribution of flow field in the fan with shunt blade is analyzed, and the influence of different shunt blade size on the flow field distribution in axial fan is analyzed.The axial flow fan is usually accompanied by strong noise during operation, which mainly consists of two parts: one is that the blade produces periodic noise when the fan impeller rotates, the other is because the air flows through the impeller runner,Eddy current disturbance noise caused by boundary layer separation and wake flow.In this paper, by using Lighthill sound analogy method and LES and FW-H mixed model, the three-dimensional unsteady flow noise of the axial flow fan is numerically solved, and the influence of impeller speed on the noise spectrum distribution and the total sound pressure level of the fan is obtained.The influence of shunt blade on noise spectrum distribution and total sound pressure level of fan is analyzed.It provides the theoretical basis for the structure design of axial flow fan and the noise reduction of fan in the future.The numerical calculation shows that the static pressure of the fan impeller is much higher than that of the suction surface, the static pressure on the pressure surface is positive pressure, and the static pressure on the suction surface is negative pressure, which is the sign of the work done by the impeller.The velocity increases gradually along the axial direction and the kinetic energy increases, while the static pressure decreases along the axial direction, and the static pressure energy is converted into the kinetic energy of the gas.In addition, due to the lateral pressure acting on the tail boundary flow of the impeller, the flow is offset parallel to the boundary, thus the secondary eddy current is produced in the tail of the fan impeller.When there is a shunt blade, the static pressure energy is converted into gas kinetic energy, the gas velocity increases and the static pressure decreases, and with the size of the shunt blade becoming narrower, the passage between the shunt blade and the impeller becomes wider, and the gas velocity decreases and the static pressure increases again.In addition, the shunt blade can make the static pressure distribution in the fan more uniform and reduce the pressure pulsation, thus effectively restrain the flow separation phenomenon between the gas and the suction surface of the impeller.The secondary flow caused by transverse pressure on the tail boundary flow of impeller can also be weakened, and the wake disturbance at the end of impeller can be greatly improved.The total sound pressure level at the inlet of the fan is low, which is mainly the rotating noise caused by the impeller rotation, while the total sound pressure level at the outlet of the fan is higher, which is located in the impeller wake flow and the separation of the eddy current, and the eddy current disturbance is strong.The swirl noise is superimposed on the basis of rotating noise.In addition, the shunt blade can reduce the flow resistance of the gas in the fan channel, increase the static pressure in the low energy area of the suction surface of the impeller, reduce the generation of deswirl and wash the secondary wake at the end of the impeller, thereby reducing the eddy current noise; if the size of the shunt blade is too short,The static pressure near the suction surface of the impeller is lower than that of the blade without shunt, which enhances the separation loss in the fan passage, and the impeller suction surface devortex seriously, and the eddy current noise is enhanced.
【學位授予單位】:東北石油大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH432.1

【參考文獻】

相關(guān)期刊論文 前10條

1 張師帥;馬如林;李劉杰;楊山坡;;帶尾緣吹氣的空心葉輪軸流式風機內(nèi)部流動和氣動噪聲模擬[J];制冷與空調(diào);2014年12期

2 劉洋;楊志剛;;不同計算方法在軸流式風機數(shù)值模擬中的應用[J];風機技術(shù);2014年01期

3 李永霞;;火力發(fā)電中鍋爐系統(tǒng)風機的邏輯控制探討[J];通訊世界;2013年21期

4 袁言昆;;對旋軸流風機的設(shè)計計算與仿真分析[J];山西煤炭管理干部學院學報;2013年03期

5 T.Shigemitsu;J.Fukutomi;Y.Okabe;K.Iuchi;H.Shimizu;;Unsteady Flow Condition of Contra-Rotating Small-Sized Axial Fan[J];Journal of Thermal Science;2011年06期

6 姜能寶;蔡馳;;青島煉化常減壓裝置頂循熱量利用的流程模擬[J];中外能源;2011年S1期

7 龐佑霞;唐勇;梁亮;朱宗銘;;貫流風機結(jié)構(gòu)參數(shù)優(yōu)化組合研究[J];農(nóng)業(yè)機械學報;2011年09期

8 張?zhí)K北;李意民;孫婉;曹蕾;;對旋軸流式通風機中主要噪聲源分析及優(yōu)化設(shè)計[J];礦山機械;2011年09期

9 郝明慧;解曉蕾;張吉超;;地板采暖模擬計算及溫度分析[J];中國住宅設(shè)施;2011年02期

10 雷蕾;李意民;曹雷;;對旋風機流場分析與數(shù)值模擬研究[J];礦山機械;2010年23期

相關(guān)博士學位論文 前3條

1 王磊;基于實時模擬信息反饋的湍流擴散火焰數(shù)值模擬研究[D];中國科學技術(shù)大學;2016年

2 王翠云;基于遙感和CFD技術(shù)的城市熱環(huán)境分析與模擬[D];蘭州大學;2008年

3 李楊;低壓軸流風扇周向彎曲動葉內(nèi)部流動特征的實驗和數(shù)值研究[D];上海交通大學;2007年

相關(guān)碩士學位論文 前10條

1 李作偉;軸流風扇動靜葉片搭配對氣動噪聲影響的研究[D];電子科技大學;2016年

2 章甘;軸流風機仿生流動控制降噪試驗及數(shù)值模擬[D];吉林大學;2015年

3 林亮;小型軸流式風機通流部件優(yōu)化設(shè)計研究[D];東南大學;2015年

4 高新新;600MW機組雙級動葉可調(diào)軸流式引風機性能研究[D];華北電力大學;2014年

5 鄭迪;基于CFD的Savonius風機葉片優(yōu)化研究[D];浙江大學;2014年

6 伍文華;電子設(shè)備氣動噪聲降噪設(shè)計方法研究[D];電子科技大學;2013年

7 施曉寬;大型冷卻塔風機遠程監(jiān)控及節(jié)能控制系統(tǒng)研究[D];天津科技大學;2013年

8 李業(yè);低壓彎掠軸流風機改型設(shè)計與氣動噪聲預測[D];華中科技大學;2013年

9 何向艷;軸流式風機通流部件特性研究[D];華北電力大學;2012年

10 韓明禮;精密數(shù)控機床靜壓導軌的設(shè)計及FLUENT分析[D];東北大學;2011年



本文編號:1762609

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/1762609.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dd889***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com