天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 機電工程論文 >

固液兩相流中離心泵葉片磨損及能量損失特性分析

發(fā)布時間:2018-04-12 23:11

  本文選題:離心泵 + 固相濃度 ; 參考:《蘭州理工大學》2017年碩士論文


【摘要】:離心泵在農(nóng)業(yè)、漁業(yè)、化工、水電廠、能源與動力工程所在的生活應(yīng)用和工程應(yīng)用中使用廣泛,而離心泵在固液兩相流中的應(yīng)用主要瓶頸在于過流部件的磨損、能量損失以及泵運行穩(wěn)定性。本文以導葉式離心泵為研究對象,采用標準k-?湍流模型和Mixture多相流模型進行全流道固液兩相流數(shù)值模擬,在不同固相粒徑(0.016mm、0.036mm、0.076mm、0.15mm)與體積分數(shù)(2%、4%、8%、12%)下,首先計算出葉輪各監(jiān)測點上的磨損量,并對磨損較嚴重的部位進行摩擦磨損強度和碰撞磨損強度的定量計算,然后通過流體微團的相對能量轉(zhuǎn)子焓(Rothalpy)值,做出從葉片前緣到出口的能量變化曲線來確定能量損失的大小,最后采用大渦模擬研究了泵流道內(nèi)各監(jiān)測點處的壓力脈動特性,得出如下結(jié)論:1.從葉片前緣到出口,壓力面上的相對速度出現(xiàn)先減小后增大的趨勢,吸力面上的相對速度出現(xiàn)先增大后減小,出口處又增大的趨勢。顆粒直徑和固相體積分數(shù)在一定范圍內(nèi)變化時其對應(yīng)的相對速度變化不大。2.磨損最嚴重的部位發(fā)生在靠近吸力面進口附近流域處,其次為葉片前緣和壓力面后蓋板流線出口處,壓力面和吸力面出口處的磨損也較大,壓力面前蓋板流線頭部和出口處的磨損較小。3.從葉片前緣到出口,Rothalpy值總體增大。在同一監(jiān)測點上,葉片壓力面上的Rothalpy值大于吸力面,葉片壓力面前半段,沿葉輪徑向方向流體微團逐漸獲得能量。壓力面后半段能量損失逐漸增大,壓力面出口邊流體微團獲得的能量減小,出口處能量損失較大。在葉片吸力面沿葉輪徑向方向,流體微團不斷獲得能量,靠近吸力面進口附近流域,流體微團獲得的能量最小,吸力面出口邊流體微團獲得的能量減小,出口處能量損失較大。4.隨著顆粒直徑的增大,壓力脈動幅值逐漸減小,固液兩相介質(zhì)時的壓力脈動波形比清水介質(zhì)時的波形出現(xiàn)滯后現(xiàn)象。壓力脈動受固相體積分數(shù)變化的影響較小。
[Abstract]:Centrifugal pumps are widely used in agriculture, fishery, chemical industry, hydropower plants, energy and power engineering applications and engineering applications. The main bottleneck of centrifugal pumps in solid-liquid two-phase flow is the wear of flow components.Energy loss and pump stability.In this paper, the guide vane centrifugal pump is used as the research object.The friction and wear strength and impact wear strength of the seriously worn parts are calculated quantitatively, and then the rotorpyy values of the relative energy rotor enthalpy of the fluid microparticles are calculated.The energy change curve from the vane leading edge to the outlet is made to determine the magnitude of energy loss. Finally, the pressure pulsation characteristics at various monitoring points in the pump passage are studied by using large eddy simulation, and the following conclusions are drawn as follows: 1.From the leading edge of the blade to the outlet, the relative velocity on the pressure surface decreases first and then increases, and the relative velocity on the suction surface increases first and then decreases, and then increases at the outlet.When the particle diameter and solid volume fraction change in a certain range, the relative velocity of the particle changes little. 2.The most serious wear occurred near the drainage area near the entrance of suction surface, followed by the outlet of streamline line of blade front and back cover plate, and the wear of pressure surface and suction surface outlet was also larger.Pressure front cover streamline head and outlet wear is smaller. 3.The value of Rothalpy increases from the leading edge of the leaf to the outlet.At the same monitoring point, the Rothalpy value on the blade pressure surface is larger than that on the suction surface, and the energy is gradually obtained by the fluid microparticles along the radial direction of the impeller.The energy loss in the second half of the pressure surface increases gradually, and the energy at the outlet of the pressure surface decreases, and the energy loss at the outlet is larger.In the radial direction of the blade suction surface, the fluid microspheres continuously obtain energy. Near the inlet of the suction surface, the energy obtained by the fluid microspheres is the smallest, the energy obtained by the fluid microspheres at the suction surface exit edge decreases, and the energy loss at the outlet is larger than that at the outlet.With the increase of particle diameter, the amplitude of pressure pulsation decreases gradually, and the wave form of pressure pulsation in solid-liquid two-phase medium is hysteresis compared with that in water medium.The pressure fluctuation is less affected by the change of volume fraction of solid phase.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH311

【參考文獻】

相關(guān)期刊論文 前10條

1 王凡;錢忠東;郭志偉;郜元勇;;可調(diào)導葉式軸流泵壓力脈動數(shù)值分析[J];農(nóng)業(yè)機械學報;2017年03期

2 羅亮;張師帥;;基于兩種固液兩相流模型的渣漿泵葉片磨損預測[J];水泵技術(shù);2016年06期

3 朱迪;肖若富;陶然;劉偉超;;水泵水輪機泵工況非設(shè)計工況流態(tài)與壓力脈動分析[J];農(nóng)業(yè)機械學報;2016年12期

4 李偉;季磊磊;施衛(wèi)東;周嶺;平元峰;;不同流量工況下混流泵壓力脈動試驗[J];農(nóng)業(yè)機械學報;2016年12期

5 王家斌;陳佳;袁壽其;裴吉;孟凡;;雙吸雙蝸殼離心泵隔舌處的壓力脈動特性[J];排灌機械工程學報;2016年04期

6 黃思;鄒文朗;周錦駒;何東萍;彭天陽;;基于DPM模型的離心泵非定常固液兩相流及磨損計算(英文)[J];機床與液壓;2016年06期

7 黃劍峰;張立翔;姚激;龍立焱;;水輪機泥沙磨損兩相湍流場數(shù)值模擬[J];排灌機械工程學報;2016年02期

8 翟杰;祝寶山;李凱;王旭鶴;曹樹良;;低比轉(zhuǎn)數(shù)混流泵導葉內(nèi)部壓力脈動特性研究[J];農(nóng)業(yè)機械學報;2016年06期

9 李仁年;胡鵬林;黎義斌;畢禎;周棟;;葉頂間隙對斜流泵進口壓力脈動影響的數(shù)值分析[J];排灌機械工程學報;2015年07期

10 韓偉;金毅;李仁年;岳婷;權(quán)輝;;顆粒對離心泵內(nèi)部壓力脈動特性的影響[J];排灌機械工程學報;2015年06期

相關(guān)博士學位論文 前3條

1 苗森春;離心泵作液力透平的能量轉(zhuǎn)換特性及葉輪優(yōu)化研究[D];蘭州理工大學;2016年

2 李f3;離心泵內(nèi)部固液兩相流動數(shù)值模擬與磨損特性研究[D];浙江理工大學;2014年

3 程效銳;螺旋離心泵內(nèi)能量轉(zhuǎn)換特性及設(shè)計方法研究[D];蘭州理工大學;2014年

相關(guān)碩士學位論文 前3條

1 權(quán)輝;螺旋離心泵內(nèi)部流動和能量轉(zhuǎn)換機理的研究[D];蘭州理工大學;2012年

2 錢晨;低比轉(zhuǎn)速離心泵圓盤損失計算的探討及內(nèi)部流動特征的數(shù)值分析[D];蘭州理工大學;2012年

3 汪藝義;科氏力在小尺度液固兩相流中對固體顆粒運動影響的研究[D];新疆農(nóng)業(yè)大學;2010年

,

本文編號:1741847

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/1741847.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9d2f2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com