基于DSP技術(shù)的軸承外觀缺陷檢測系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文選題:軸承 切入點(diǎn):外觀缺陷 出處:《河南科技大學(xué)》2017年碩士論文
【摘要】:隨著科技的進(jìn)步和現(xiàn)代工業(yè)的發(fā)展,工業(yè)檢測逐步走向自動化、智能化,傳統(tǒng)人工檢測已經(jīng)無法滿足現(xiàn)代企業(yè)的檢測要求,機(jī)器視覺檢測技術(shù)以其檢測效率高、精度高、可靠性好等優(yōu)勢在現(xiàn)代工業(yè)中已得到廣泛的應(yīng)用。軸承在生產(chǎn)和裝配過程中經(jīng)常出現(xiàn)磕碰、磨損、擦傷、銹蝕等外觀缺陷,一般通過人工目測對有外觀缺陷的軸承進(jìn)行剔除。隨著機(jī)器視覺檢測技術(shù)以及嵌入式DSP技術(shù)的迅速發(fā)展,基于DSP技術(shù)的機(jī)器視覺檢測系統(tǒng)的應(yīng)用也愈加廣泛。本文針對現(xiàn)代軸承企業(yè)對軸承外觀的自動化檢測需求和傳統(tǒng)人工檢測方法的不足,設(shè)計(jì)一套基于DSP技術(shù)的軸承外觀缺陷在線檢測系統(tǒng)。本文主要工作分為以下四個(gè)方面。第一,簡要介紹和分析機(jī)器視覺系統(tǒng)以及DSP技術(shù)的發(fā)展階段與研究現(xiàn)狀,為本文基于DSP機(jī)器視覺檢測系統(tǒng)硬件平臺的搭建和軸承外觀缺陷檢測算法的設(shè)計(jì)提供理論依據(jù)。第二,詳細(xì)介紹軸承外觀缺陷檢測系統(tǒng)硬件平臺的搭建和各個(gè)組成模塊的設(shè)計(jì)。其中包含檢測系統(tǒng)所使用配套的光源、相機(jī)、鏡頭、LCD顯示器及DSP圖像處理系統(tǒng)硬件電路設(shè)計(jì)等。第三,針對采集到的軸承外觀的視覺特性,開發(fā)外觀缺陷檢測算法,算法流程包括圖像采集、圖像各項(xiàng)預(yù)處理、軸承定位與剪裁、差影處理、形態(tài)學(xué)運(yùn)算、缺陷標(biāo)記識別等。第四,論文對代碼優(yōu)化和執(zhí)行效率問題進(jìn)行深入分析,并在DSP平臺上對軸承外觀缺陷檢測算法進(jìn)行優(yōu)化處理,提升系統(tǒng)圖像的處理速度以及增強(qiáng)檢測的實(shí)時(shí)性;贒SP技術(shù)的軸承外觀缺陷檢測系統(tǒng),是運(yùn)用DSP圖像檢測硬件平臺,結(jié)合實(shí)時(shí)缺陷檢測算法,旨在提高企業(yè)所生產(chǎn)的軸承質(zhì)量、生產(chǎn)效率及自動化水平。經(jīng)試驗(yàn)驗(yàn)證,該方法可有效檢測出軸承外觀缺陷,并具有檢測速度快、精度高及穩(wěn)定性強(qiáng)等特點(diǎn)。
[Abstract]:With the progress of science and technology and the development of modern industry, industrial inspection has gradually moved towards automation and intelligence. Traditional manual inspection can no longer meet the requirements of modern enterprises. Machine vision detection technology has high detection efficiency and precision.The advantages of good reliability have been widely used in modern industry.In the process of production and assembly, the bearings often appear appearance defects such as bumps, wear, abrasion, rust and so on. The bearings with appearance defects are generally eliminated by manual visual measurement.With the rapid development of machine vision detection technology and embedded DSP technology, machine vision detection system based on DSP technology is more and more widely used.In view of the demand of modern bearing enterprises for automatic inspection of bearing appearance and the shortcomings of traditional manual inspection methods, a set of on-line inspection system of bearing appearance defects based on DSP technology is designed in this paper.The main work of this paper is divided into the following four aspects.Firstly, this paper briefly introduces and analyzes the development stage and research status of machine vision system and DSP technology, which provides a theoretical basis for the construction of hardware platform based on DSP machine vision detection system and the design of bearing appearance defect detection algorithm.Secondly, the hardware platform and the design of each component module of bearing appearance defect detection system are introduced in detail.It includes light source, camera, lens LCD display and hardware circuit design of DSP image processing system.Thirdly, aiming at the visual characteristics of the bearing appearance, a defect detection algorithm is developed. The algorithm flow includes image acquisition, image preprocessing, bearing location and tailoring, differential image processing, morphological operation, defect identification and so on.Fourthly, the paper analyzes the code optimization and execution efficiency, and optimizes the bearing appearance defect detection algorithm on the DSP platform to improve the system image processing speed and enhance the real-time detection.The bearing appearance defect detection system based on DSP technology is designed to improve the bearing quality, production efficiency and automation level by using DSP image detection hardware platform and real-time defect detection algorithm.The test results show that this method can effectively detect the appearance defects of bearing, and has the characteristics of fast detection speed, high precision and strong stability.
【學(xué)位授予單位】:河南科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH133.3;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡德超;朱尤攀;羅琳;李澤民;范宏波;孫愛平;蘇凡;韓娟;;基于紅外目標(biāo)提取的夜視圖像融合實(shí)時(shí)系統(tǒng)研究[J];紅外技術(shù);2014年02期
2 張國福;沈洪艷;;機(jī)器視覺技術(shù)在工業(yè)檢測中的應(yīng)用綜述[J];電子技術(shù)與軟件工程;2013年22期
3 肖玲玲;龍魁;;基于DSP技術(shù)的鎢礦初選系統(tǒng)的研究[J];礦業(yè)研究與開發(fā);2013年02期
4 端文龍;;機(jī)器視覺技術(shù)及其在機(jī)械制造自動化中的應(yīng)用[J];硅谷;2013年06期
5 朱寶偉;;機(jī)器視覺中的光源照明設(shè)計(jì)[J];電子科技;2013年03期
6 趙宇峰;高超;王建國;;基于機(jī)器視覺的工業(yè)產(chǎn)品表面缺陷檢測算法研究[J];計(jì)算機(jī)應(yīng)用與軟件;2012年02期
7 張五一;張繼超;侯遠(yuǎn)韶;楊揚(yáng);;機(jī)器視覺系統(tǒng)中鏡頭的選擇[J];中原工學(xué)院學(xué)報(bào);2011年06期
8 劉洲峰;程寅;郭振鐸;;基于DM642高速異纖圖像檢測處理系統(tǒng)的硬件設(shè)計(jì)[J];電氣自動化;2010年04期
9 陳躍飛;王恒迪;鄧四二;;機(jī)器視覺檢測技術(shù)中軸承的定位算法[J];軸承;2010年04期
10 付顯君;;試論DSP發(fā)展趨勢[J];電腦知識與技術(shù);2009年36期
相關(guān)碩士學(xué)位論文 前7條
1 韓國盛;基于TMS320DM642的視頻圖像處理平臺設(shè)計(jì)與實(shí)現(xiàn)[D];南京理工大學(xué);2013年
2 龍建武;基于Otsu的圖像閾值分割算法的研究[D];吉林大學(xué);2011年
3 游志宇;基于嵌入式機(jī)器視覺控制系統(tǒng)的研究[D];西華大學(xué);2009年
4 馮麗;VC-1解碼算法研究及其DSP移植與優(yōu)化[D];北京交通大學(xué);2008年
5 胡彥磊;基于圖像處理和DSP的啤酒瓶污損檢測[D];山東大學(xué);2008年
6 賈志強(qiáng);基于DM642的虹膜識別算法程序優(yōu)化研究[D];哈爾濱工程大學(xué);2007年
7 王繼芳;數(shù)字圖象數(shù)學(xué)形態(tài)學(xué)算法研究與應(yīng)用[D];中國人民解放軍信息工程大學(xué);2005年
,本文編號:1728704
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1728704.html