RV減速器擺線輪齒廓修形的研究
本文選題:RV減速器 切入點(diǎn):擺線輪齒廓修形 出處:《河南科技大學(xué)》2017年碩士論文
【摘要】:擺線針輪傳動(dòng)系統(tǒng)作為RV減速器中的低速輸出級(jí),其運(yùn)動(dòng)精度及承載能力將會(huì)直接影響RV減速器的傳動(dòng)性能。而對(duì)于擺線針輪傳動(dòng)系統(tǒng)而言,擺線輪齒廓的修形優(yōu)化則是決定傳動(dòng)系統(tǒng)回轉(zhuǎn)精度與承載能力的關(guān)鍵問題。因此,擺線輪齒廓修形方式及修形量的研究一直是近年來國內(nèi)相關(guān)研究者的熱點(diǎn)。本文基于擺線輪齒廓的成形原理及其修形目標(biāo),提出了一種偏心距修形方式,并從多個(gè)角度對(duì)偏心距與等距、移距修形的組合形式的可行性進(jìn)行了分析。全文的主要工作與研究成果如下:1)從回轉(zhuǎn)精度及承載能力兩方面,綜合對(duì)比分析了擺線輪各常用組合修形方式的修形效果,發(fā)現(xiàn)常用的修形方式無法同時(shí)滿足RV傳動(dòng)對(duì)高承載、低回差的要求;并提出一種偏心距修形方式,指出經(jīng)偏心距修形的擺線齒廓可形成便于擺線輪與針齒嚙合的法向間隙,但由于經(jīng)偏心距修形的擺線齒廓曲線與標(biāo)準(zhǔn)齒廓曲線存在交叉干涉,因而該種修形方式無法單獨(dú)用于一齒差擺線針輪傳動(dòng)結(jié)構(gòu)中,需結(jié)合等距、移距修形方式使用。2)在運(yùn)用三坐標(biāo)測(cè)量?jī)x對(duì)RV-40E型減速器擺線輪進(jìn)行精密測(cè)量的基礎(chǔ)上,基于最小二乘法對(duì)測(cè)量所得的擺線輪齒形坐標(biāo)參數(shù)進(jìn)行圓弧擬合,得到了相應(yīng)的擺線輪齒形方程。然后,以所得齒形方程曲線為目標(biāo)齒廓曲線,運(yùn)用Matlab對(duì)“偏心距+等距+移距”、“等距+移距”、“等距+移距+轉(zhuǎn)角”三種組合修形方式的所形成的擺線輪的齒形進(jìn)行優(yōu)化,優(yōu)化結(jié)果表明:相較于“轉(zhuǎn)角+等距+移距”和“等距+移距”組合修形,“偏心距+等距+移距”組合修形所得的曲線與目標(biāo)齒廓曲線的偏差更小,這說明了“偏心距+等距+移距”組合修形方式具有一定的可行性。3)針對(duì)現(xiàn)有擺線針輪傳動(dòng)偏心距選取的缺點(diǎn)與不足,依據(jù)短幅系數(shù)與偏心距的關(guān)系,建立了以獲取最大承載能力為目標(biāo)的偏心距修形量的優(yōu)化模型,得到了不同的擺線針輪系統(tǒng)所對(duì)應(yīng)的偏心距修形量的優(yōu)化值。然后又創(chuàng)建了擺線針輪傳動(dòng)多體接觸的有限元模型,并對(duì)偏心距修形前后的擺線針輪傳動(dòng)的接觸性能進(jìn)行了計(jì)算機(jī)模擬仿真分析,結(jié)果表明偏心距修形后的擺線輪與針齒之間的接觸應(yīng)力降低了12.6%左右,進(jìn)一步論證了偏心距修形后的擺線針輪傳動(dòng)系統(tǒng)的承載能力更大。這為擺線針輪的性能優(yōu)化設(shè)計(jì)提供了一定的參考價(jià)值。4)以“偏心距+等距+移距”的優(yōu)化修形量為加工參數(shù)對(duì)擺線輪進(jìn)行磨削修形,并替換RV-40E減速器中的擺線輪,將其置于回差測(cè)試平臺(tái)上測(cè)試替換擺線輪后的樣機(jī)的傳動(dòng)誤差及幾何回差,測(cè)量結(jié)果表明“偏心距+等距+移距”組合修形方式基本滿足RV減速器對(duì)傳動(dòng)精度的要求。
[Abstract]:As a low speed output stage in RV reducer, cycloidal needle wheel drive system has a direct impact on the transmission performance of RV reducer.For cycloidal needle wheel transmission system, the optimization of cycloid gear profile is the key to determine the accuracy and bearing capacity of the transmission system.Therefore, the research of cycloidal gear profile modification and modification has been a hot topic in recent years.Based on the forming principle of cycloid gear tooth profile and its modification target, this paper presents an eccentricity modification method, and analyzes the feasibility of the combination of eccentric distance, equidistance and shift pitch modification from several angles.The main work and research results of this paper are as follows: (1) from the aspects of rotation precision and bearing capacity, the modification effect of the common combination of cycloid wheel is compared and analyzed, and it is found that the common modification method can not meet the high bearing capacity of RV transmission at the same time.The requirement of low return error and an eccentricity modification method are put forward. It is pointed out that the cycloidal tooth profile modified by eccentricity can form normal clearance which is convenient for the engagement of cycloid wheel and needle tooth.However, due to the cross interference between the cycloidal profile curve and the standard tooth profile curve modified by eccentricity, this modification method can not be used in the single tooth difference cycloidal needle wheel drive structure alone, so it is necessary to combine the equidistance.On the basis of precise measurement of cycloidal wheel of RV-40E reducer by using three coordinate measuring instrument, the tooth shape coordinate parameters of cycloidal gear are fitted by circle arc based on least square method.The tooth profile equation of cycloidal gear is obtained.Then, taking the obtained tooth shape equation curve as the target tooth profile curve, the Matlab is used to analyze the "offset isometric shift" and "isometric shift distance".The tooth profile of cycloidal gear formed by the three combined modification methods of "isometric shift angle" is optimized. The optimization results show that compared with the combination modification of "angular isometric shift distance" and "isometric shift distance", the gear profile of cycloidal gear is optimized.The deviation between the curve obtained by the combination modification of "eccentricity equal distance shift" and the target tooth profile curve is even smaller.This shows that "eccentricity isometric shift" combination modification method has certain feasibility. 3) aiming at the shortcomings and shortcomings of eccentricity selection of cycloidal needle wheel drive, according to the relationship between short amplitude coefficient and eccentricity,The optimization model of the eccentric distance modification is established with the aim of obtaining the maximum bearing capacity, and the optimum values of the eccentricity modification corresponding to different cycloid needle wheel systems are obtained.Then the finite element model of multi-body contact of cycloidal needle wheel transmission is established, and the contact performance of cycloidal needle wheel transmission before and after eccentric distance modification is simulated and analyzed by computer simulation.The results show that the contact stress between the cycloid wheel and the pin tooth is reduced by about 12. 6% after the eccentric distance modification. It is further demonstrated that the bearing capacity of the cycloidal needle wheel transmission system after the eccentric distance modification is greater.This provides a certain reference value for the performance optimization design of cycloidal needle wheel. 4) grinding the cycloid wheel with the optimized shape modification of "eccentricity and equidistance shift", and replacing the cycloid wheel in the RV-40E reducer.The transmission error and geometric return error of the prototype after replacing cycloid wheel are tested on the back difference test platform. The measurement results show that the combined modification mode of "eccentricity isometric shift distance" basically meets the requirements of RV reducer for transmission accuracy.
【學(xué)位授予單位】:河南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH132.46
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 聶少文;胡吉全;李波;陳定方;梅杰;吳俊峰;;RV減速機(jī)擺線針輪齒廓修形優(yōu)化分析[J];機(jī)械設(shè)計(jì)與研究;2016年06期
2 何衛(wèi)東;吳鑫輝;盧琦;;RV傳動(dòng)中擺線輪及曲柄軸承有限元分析[J];大連交通大學(xué)學(xué)報(bào);2016年04期
3 王文濤;徐宏海;;擺線輪齒廓各參數(shù)對(duì)其傳動(dòng)性能的影響[J];機(jī)械設(shè)計(jì)與制造;2016年08期
4 許立新;楊玉虎;;一種擺線針輪傳動(dòng)多齒嚙合接觸特性分析方法[J];中國機(jī)械工程;2016年10期
5 魏波;周廣武;楊榮松;周宏軍;;RV減速器擺線輪齒廓修形方法對(duì)比研究[J];機(jī)械設(shè)計(jì)與研究;2016年01期
6 王文濤;徐宏海;劉學(xué)翱;馮玉賓;;短幅擺線及其齒廓特性的理論研究[J];機(jī)械設(shè)計(jì)與制造;2016年01期
7 黃津晶;吳銳;羅濤;;RV減速機(jī)針擺傳動(dòng)齒面接觸特性分析[J];武漢理工大學(xué)學(xué)報(bào)(信息與管理工程版);2015年06期
8 趙博;鄧效忠;李天興;蘇建新;;機(jī)器人RV減速器擺線輪修形的理論研究[J];機(jī)械傳動(dòng);2015年12期
9 侯耐;王長(zhǎng)路;張立勇;黃首峰;周紅凱;李亞康;;高精度擺線傳動(dòng)修形與回差分析[J];機(jī)械傳動(dòng);2015年11期
10 黃興;何文杰;符遠(yuǎn)翔;;工業(yè)機(jī)器人精密減速器綜述[J];機(jī)床與液壓;2015年13期
相關(guān)碩士學(xué)位論文 前5條
1 冉毅;RV減速器傳動(dòng)精度分析[D];重慶大學(xué);2015年
2 季洋江;兩級(jí)同軸擺線精密傳動(dòng)特性研究[D];重慶大學(xué);2014年
3 張潔;RV減速器傳動(dòng)特性分析[D];天津大學(xué);2012年
4 劉鳴熙;擺線針輪傳動(dòng)與小型RV二級(jí)減速器的研究[D];北京交通大學(xué);2008年
5 彭永華;FA針擺傳動(dòng)的齒面動(dòng)態(tài)受力分析與三維接觸有限元驗(yàn)算[D];大連交通大學(xué);2006年
,本文編號(hào):1718275
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1718275.html