考慮變間距隔板的起重機(jī)偏軌箱梁畸變特性研究
本文選題:起重機(jī) 切入點(diǎn):橫隔板 出處:《西南交通大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:隨著我國現(xiàn)代物流產(chǎn)業(yè)規(guī)模的不斷擴(kuò)大,以大型化、輕量化為目標(biāo)的起重機(jī)結(jié)構(gòu)設(shè)計(jì)理念已廣泛運(yùn)用于生產(chǎn)實(shí)踐過程中。單純通過減小箱梁各板元厚度,實(shí)現(xiàn)整機(jī)結(jié)構(gòu)輕量化,勢必會降低箱梁各局部區(qū)格穩(wěn)定性、增加箱梁各截面縱橫向變形量,不利于生產(chǎn)安全。如在箱梁內(nèi)部按一定間距焊接橫隔板,則可有效提升各板元區(qū)格的局部穩(wěn)定性,同時增加箱梁整體扭轉(zhuǎn)剛度和抗畸變翹曲剛度,減小偏載作用下箱梁截面縱橫向變形。合理布局橫隔板間距,可優(yōu)化箱梁截面應(yīng)力應(yīng)變分布特征、提高鋼材利用率,以實(shí)現(xiàn)箱梁結(jié)構(gòu)的輕量化設(shè)計(jì)。本文緊密圍繞帶變間距橫隔板箱梁的截面畸變變形問題,構(gòu)建了基于剛(柔)性隔板假設(shè)下的箱梁畸變分析模型,系統(tǒng)研究了隔板位置、數(shù)量及厚度等對箱梁截面畸變變形的影響規(guī)律。本文的研究內(nèi)容主要有:(1)針對帶隔板箱梁,將隔板與箱梁間作用力視為隔板厚度范圍內(nèi)的均布畸變力矩,分別基于隔板面內(nèi)無限剛度假設(shè)和箱梁與隔板間剪切變形的協(xié)調(diào)性,提出了考慮截面畸變剪切變形的帶剛(柔)性隔板簡支梁(懸臂梁)畸變初參數(shù)法,繼而推導(dǎo)出箱梁各截面畸變角和畸變翹曲函數(shù)的初參數(shù)解。對比不同隔板數(shù)量和厚度下箱梁各采樣點(diǎn)處畸變角、畸變翹曲位移和應(yīng)力初參數(shù)值和有限元仿真值,結(jié)果充分驗(yàn)證了剛(柔)性隔板假設(shè)下的簡支梁(懸臂梁)畸變初參數(shù)法的正確性。(2)基于帶柔性隔板簡支梁(懸臂梁)畸變初參數(shù)法,分別圍繞小車位于簡支梁跨中、端部及懸臂梁端部等關(guān)鍵位置,展開輪壓點(diǎn)截面處畸變角、畸變翹曲應(yīng)力及畸變橫向彎曲底角隨箱梁高跨比、隔板數(shù)及厚度比參數(shù)化分析。結(jié)果表明:當(dāng)小車位于簡支梁跨中或端部時,增加隔板數(shù)量、截面高跨比及厚度比可有效抑制輪壓點(diǎn)截面節(jié)點(diǎn)處畸變角、畸變翹曲應(yīng)力及上下翼緣板橫向彎曲變形。(3)以對稱畸變載荷下輪壓點(diǎn)處節(jié)點(diǎn)畸變翹曲位移及應(yīng)力為目標(biāo)展開三隔板簡支梁的隔板位置優(yōu)化分析。此優(yōu)化問題是以跨中隔板局部剪切穩(wěn)定性和承載板元局部彎剪組合穩(wěn)定性為約束條件的連續(xù)型單變量優(yōu)化問題。研究表明:不同對稱外畸變力矩Md下,分別以小車輪壓點(diǎn)處節(jié)點(diǎn)畸變翹曲應(yīng)力、縱向畸變位移及兩者組合為優(yōu)化目標(biāo)的最優(yōu)隔板Ⅰ位于外畸變載荷作用截面處,此時跨中隔板及承載板元的局部屈曲臨界載荷均為最大。(4)針對不等距對稱三隔板簡支梁,以小車輪壓點(diǎn)處畸變翹曲函數(shù)的一(二)階導(dǎo)數(shù)為等效目標(biāo),分析與上述三隔板等效的等距三隔板簡支梁高度系數(shù)與寬度系數(shù)間關(guān)系,結(jié)果表明:基于最小二乘原理的兩尺寸系數(shù)間存在線性相關(guān)性。繼而,系統(tǒng)分析了不等距對稱三隔板簡支梁畸變翹曲剛度及框架剛度與原等距簡支梁間非線性關(guān)系,研究表明:不等距對稱三隔板簡支梁相對原等距三隔板簡支梁畸變翹曲剛度增大,畸變框架剛度減小。(5)分別以無(帶)隔板簡支箱梁為對象,通過FCS四通道液壓伺服實(shí)驗(yàn)加載平臺,直接對箱梁施加兩對稱集中畸變載荷,并借助百分表和應(yīng)變儀對箱梁采樣點(diǎn)處畸變位移和應(yīng)力進(jìn)行讀取。對比畸變實(shí)驗(yàn)數(shù)據(jù)和初參數(shù)解,結(jié)果充分驗(yàn)證了以畸變翹曲函數(shù)為初始變量的四階畸變初參數(shù)法的正確性和柔性隔板假設(shè)(變形協(xié)調(diào)性)的正確性。同時,鑒于加載實(shí)驗(yàn)過程中各實(shí)驗(yàn)環(huán)節(jié)的不確定性,測量節(jié)點(diǎn)處位移和應(yīng)力存在一定范圍的容許誤差。誤差主要來源于制造加工精度、安裝精度和焊接后板件殘余變形等。綜上,本文整合了理論分析、有限元仿真和實(shí)驗(yàn)驗(yàn)證等三個部分,針對帶橫隔板箱梁截面畸變特性展開了系統(tǒng)研究。本文的研究豐富了箱梁結(jié)構(gòu)設(shè)計(jì)中截面畸變知識體系,對完善箱梁結(jié)構(gòu)輕量化設(shè)計(jì)理論體系具有重要意義。
[Abstract]:As China's modern logistics industry continues to expand the scale, to large-scale, crane structure lightweight design for the target has been widely used in the practice of production. Only by reducing the thickness of plate girder element, realize the whole lightweight structure, is bound to reduce the local stability of the grid box girder, box girder of the increase section of vertical and horizontal deformation, is not conducive to the production safety. As in the box girder according to a certain distance welding diaphragm, can effectively enhance the local stability of plate element grid, while increasing the box girder torsion stiffness and anti warping stiffness, reduce the partial load of box girder vertical and horizontal deformation. Reasonable the layout of diaphragm spacing, can optimize the box girder section stress and strain distribution, improve the utilization rate of steel, in order to achieve the lightweight design of box girder structure. This dissertation focuses on the deformation of cross section distortion with variable spacing diaphragm box girder, Based on rigid model partition (soft) under the assumption of box girder distortion analysis system of diaphragm position, number and thickness on the influence of box girder distortion. The main contents of this paper are: (1) the clapboard box girder, box girder and the partition between force as uniform distortion torque diaphragm thickness range, respectively based on the surface of the clapboard in the infinite stiffness assumption and box girder and diaphragm shear deformation coordination, considering the rigid band deformation of cross section distortion (soft) shear diaphragm Jian Zhiliang (cantilever) distortion of initial parameters, and then derive the initial parameter of box girder the cross-section distortion angle and distortion warping function solution. The thickness and quantity of different baffle box girder under different sampling point distortion angle distortion, warping displacement and stress of primary parameters and finite element simulation, the result proves that the stiffness (soft) diaphragm (under the assumption of Jian Zhiliang Cantilever) correct parameter method of distortion. At the beginning of (2) with flexible diaphragm beam (beam) distortion based on initial parameter method, respectively, around the car located in the end of the bridge, and the cantilever beam end key position, expanding wheel pressure point section distortion angle distortion, warping stress and transverse bending distortion the corner with the box girder height span ratio, the partition number and the thickness ratio of the parametric analysis. The results show that when the car is located in the bridge or end, increase the number of the partition plate, high cross section ratio and thickness ratio can inhibit the wheel pressure section of joint angle of distortion, distortion and warping stress on the flange lateral bending deformation. (3) analyze three position optimization partition partition beam as target to symmetry load tire pressure point node warping displacement and stress. This optimization problem is to cross diaphragm local shear stability and bearing plate element local bending shear combination The optimization problem of continuous stability for the constraints of the single variable. The research shows that different symmetrical distortion torque Md, with pressure on the wheels at the point of node distortion warping stress, vertical displacement and distortion combination for the optimal partition of the optimization target is located outside the distortion load section, the cross baffle and bearing local the buckling load of the plate element are the biggest. (4) for non equidistant symmetric three partition beam, with car wheel pressure at the point of distortion warping function (two) is a derivative of equivalent target, analysis and the three equivalent equidistant partition three partition beam height coefficient and the width coefficient of the relationship between the results show that there is the linear correlation coefficient between the two dimensions based on the principle of least squares. Then, analyzed the non equidistant symmetric three partition beam distortion warping stiffness and stiffness of the frame with the original nonlinear beam offset The relationship, research shows that non equidistant symmetric three partition beam relative to the original three equidistant partition beam warping stiffness increases, the distortion of frame stiffness decreases. (5) with no (belt) plate simply supported box girder as the object, through the FCS four channel hydraulic servo loading platform, directly applying the two symmetry of the box girder concentrated load and distortion, with the aid of a dial gauge and strain gauge on the box girder sampling point distortion displacement and the stress of reading. Comparing the experimental data distortion and the initial parameter solution, verified by the distortion warping function of four order distortion of the initial variables initial parameter method and the correctness of the flexible diaphragm hypothesis (deformation coordination) right. At the same time, in view of the experimental aspects during the loading process of uncertainty measurement error allowable node displacement and stress in certain range. The main error sources for manufacturing and processing precision, accuracy and installation after welding In the residual deformation. In conclusion, this paper integrates the theoretical analysis, the three part of the finite element simulation and experimental verification, for diaphragm of box girder distortion characteristics have been studied in this paper. This study enriches the box beam structure design of cross section distortion knowledge system, and has important significance to perfect the theory of box girder structure lightweight design.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TH21
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐勛;葉華文;強(qiáng)士中;;帶懸臂板薄壁箱梁的扭轉(zhuǎn)和畸變分析[J];鐵道學(xué)報(bào);2015年10期
2 徐勛;葉華文;強(qiáng)士中;;考慮剪切變形的薄壁箱梁畸變分析[J];計(jì)算力學(xué)學(xué)報(bào);2013年06期
3 徐勛;強(qiáng)士中;;薄壁箱梁畸變分析理論的研究[J];工程力學(xué);2013年11期
4 張莉;;橫隔板及幾何特征對鋼箱梁畸變效應(yīng)的影響[J];鐵道工程學(xué)報(bào);2013年08期
5 楊丙文;黎雅樂;萬水;張建東;;波形鋼腹板箱梁畸變應(yīng)力分析[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期
6 趙甲薦;魏德敏;;單箱雙室箱梁橫隔板與橫隔墻剪切應(yīng)變能計(jì)算[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年11期
7 李海鋒;羅永峰;;橫隔板對薄壁鋼箱梁縱向正應(yīng)力的影響[J];建筑結(jié)構(gòu)學(xué)報(bào);2010年S1期
8 張文獻(xiàn);龐姝;黃金芬;張唯春;;大翼緣箱梁畸變效應(yīng)的試驗(yàn)研究[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年07期
9 吳幼明;岳珠峰;呂震宙;;薄壁曲線箱梁剪力滯計(jì)算的有限段方法[J];物理學(xué)報(bào);2009年06期
10 盧彭真;魏召蘭;占玉林;王英;趙人達(dá);;基于位移場的薄壁箱梁結(jié)構(gòu)約束扭轉(zhuǎn)和畸變效應(yīng)分析[J];四川大學(xué)學(xué)報(bào)(工程科學(xué)版);2009年01期
,本文編號:1614484
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1614484.html