基于ANSYS硬密封球閥的流固耦合分析及實(shí)驗(yàn)研究
本文關(guān)鍵詞: 流場(chǎng)分析 實(shí)驗(yàn)研究 流固耦合 應(yīng)力 出處:《蘭州理工大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:球閥在管路系統(tǒng)中主要用來(lái)分配、切斷和改變介質(zhì)流動(dòng)方向。球閥的結(jié)構(gòu)比較簡(jiǎn)單,密封性較好,同樣的公稱尺寸的閥類,球閥所占的體積較小,質(zhì)量較輕和材料消耗較少。球閥由于低扭矩、輕重量和大流量的特點(diǎn),近幾年來(lái)發(fā)展特別迅速。廣泛應(yīng)用于電力、石油、煤化工、航天、航空、交通運(yùn)輸、城建、天然氣輸送管線、海洋石油、核工業(yè)、農(nóng)業(yè)以及人們的日常生活。閥門的流體計(jì)算是確定閥門水利特性有關(guān)參數(shù)的過(guò)程,所以對(duì)閥門的流場(chǎng)進(jìn)行研究顯得至關(guān)重要。當(dāng)介質(zhì)流過(guò)閥門內(nèi)部時(shí),對(duì)于密封面的影響,除了必須的彈簧力之外,同時(shí)介質(zhì)力對(duì)密封面有著不可忽略的作用。僅僅依靠實(shí)驗(yàn)數(shù)據(jù)、理論結(jié)果和經(jīng)驗(yàn)總結(jié)作為設(shè)計(jì)閥門的依據(jù),就會(huì)在一定程度上造成誤差,所以本文采用數(shù)值模擬和實(shí)驗(yàn)相結(jié)合的方法,選取應(yīng)用普遍的硬密封球閥進(jìn)行了流場(chǎng)分析和流固耦合分析。本文的主要研究?jī)?nèi)容和結(jié)論如下:1)理論上分析了硬密封球閥的工作原理和流動(dòng)特性,設(shè)計(jì)和計(jì)算了球體、閥桿、閥體、下蓋和閥座的尺寸以及密封面寬度、密封面大小圓直徑、密封必需比壓以及預(yù)緊力,為后續(xù)數(shù)值模擬奠定基礎(chǔ)。2)分析了計(jì)算流體力學(xué)的求解過(guò)程;建立球閥三維模型和劃分網(wǎng)格;用FLUENT軟件對(duì)球閥的幾個(gè)代表性的開度(20°、30°、40°、50°、60°、70°、80°,對(duì)應(yīng)的相對(duì)開度為22%、33%、44%、56%、67%、78%、89%)進(jìn)行數(shù)值模擬。通過(guò)速度分布圖、壓力分布圖和速度矢量圖研究球閥的流動(dòng)特性并用實(shí)驗(yàn)驗(yàn)證其模擬的正確性。結(jié)果表明:在整個(gè)流動(dòng)過(guò)程中,流體的最大速度位于球閥的進(jìn)出口處,此處也為流體沖蝕作用最為嚴(yán)重的區(qū)域。隨著開啟角度的增大,球閥進(jìn)出口壓降減小,流體流動(dòng)變得平緩,減小了能量損失和對(duì)閥的沖蝕作用。在開度小于40°時(shí),流量系數(shù)隨球閥開度的增大緩慢增加;而在開度大于40°之后,流量系數(shù)隨球閥開度的增大迅速增加;在球閥開度小于40°時(shí),流阻系數(shù)隨球閥開度的增大迅速減小;而在開度大于40°之后,流阻系數(shù)隨球閥開度的增大基本保持不變。3)用ANSYS軟件進(jìn)行了流固耦合分析,把流場(chǎng)模擬得到的介質(zhì)力加到球體與流體接觸的面上,在閥座上施加和實(shí)際工況相同的彈簧力并施加與實(shí)際工作情況相近的邊界條件進(jìn)行求解,得到了在介質(zhì)壓力和彈簧力的作用下密封面應(yīng)力沿閥座徑向的分布規(guī)律以及最大應(yīng)力和球閥開度的變化關(guān)系。結(jié)果表明:應(yīng)力沿閥座密封面徑向成遞減的趨勢(shì),即靠近密封圈內(nèi)側(cè)應(yīng)力最大,在密封圈外側(cè)應(yīng)力最小。當(dāng)開度大于40°之后應(yīng)力隨球閥開度的增大基本保持不變,這是因?yàn)殚_度大于40°之后,流體有了較穩(wěn)定的流動(dòng)狀態(tài),流體對(duì)密封面的影響相對(duì)減小。
[Abstract]:The ball valve is mainly used to distribute, cut off and change the flow direction of the medium in the pipeline system. The ball valve has a simple structure, good sealing, the same nominal size valve class, the ball valve occupies the smaller volume, Ball valves have developed rapidly in recent years due to their characteristics of low torque, light weight and large flow. They are widely used in power, petroleum, coal and chemical industry, aerospace, aviation, transportation, urban construction, etc. Natural gas pipelines, offshore oil, nuclear industry, agriculture, and people's daily lives. The fluid calculation of valves is the process of determining the parameters related to the hydraulic characteristics of valves, So it is very important to study the flow field of the valve. When the medium flows through the valve, the effect of the sealing surface, in addition to the necessary spring force, At the same time, the force of medium plays an important role in the sealing surface. Relying solely on experimental data, theoretical results and experience summary as the basis for valve design, errors will be caused to a certain extent. So the method of numerical simulation and experiment is used in this paper. The flow field analysis and fluid-solid coupling analysis of hard sealing ball valve are carried out. The main contents and conclusions of this paper are as follows: 1) the working principle and flow characteristics of hard seal ball valve are analyzed theoretically, and the ball and valve stem are designed and calculated. The dimensions of the valve body, lower cover and seat, the width of the sealing surface, the diameter of the sealing surface, the specific pressure of the seal and the pretightening force are required to lay the foundation for further numerical simulation. 2) the solution process of computational fluid dynamics is analyzed. Three dimensional model and mesh division of ball valve were established, and numerical simulation of several representative opening degree of ball valve, including 20 擄/ 30 擄/ 40 擄/ 50 擄/ 50 擄/ 50 擄/ 60 擄/ 60 擄/ 70 擄/ 80 擄/ 80 擄, corresponding relative opening degree = 2233 / 4444 / 56 / 7878 / 8989) was carried out by FLUENT software. The flow characteristics of the ball valve are studied by pressure distribution map and velocity vector diagram. The results show that the maximum velocity of the fluid lies at the inlet and outlet of the ball valve during the whole flow process. As the opening angle increases, the pressure drop at the inlet and outlet of the ball valve decreases, and the fluid flow becomes gentle, reducing the energy loss and eroding the valve. When the opening angle is less than 40 擄, The flow coefficient increases slowly with the opening of the ball valve, but increases rapidly with the opening of the ball valve when the opening degree is greater than 40 擄, and decreases rapidly with the increase of the opening degree of the ball valve when the opening degree of the ball valve is less than 40 擄. When the opening is greater than 40 擄, the flow resistance coefficient remains basically unchanged with the increase of the opening degree of the ball valve. (3) the fluid-solid coupling analysis is carried out with ANSYS software, and the medium force obtained by the flow field simulation is added to the surface where the sphere is in contact with the fluid. Apply the same spring force on the seat to the actual working conditions and apply boundary conditions similar to the actual working conditions to be solved, Under the action of medium pressure and spring force, the distribution of sealing surface stress along the radial direction of the valve seat and the relationship between the maximum stress and the opening of the ball valve are obtained. The results show that the stress decreases along the radial direction of the valve seat seal surface. That is, the stress near the inner side of the sealing ring is the largest, and the stress on the outside of the seal ring is the smallest. When the opening degree is greater than 40 擄, the stress will remain basically unchanged with the increase of the opening degree of the ball valve, because when the opening degree is greater than 40 擄, the fluid has a relatively stable flow state. The effect of fluid on sealing surface is relatively small.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH134
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊國(guó)強(qiáng);李志鵬;;基于Fluent的球閥內(nèi)部流場(chǎng)的仿真模擬及研究[J];機(jī)械科學(xué)與技術(shù);2014年12期
2 屈鐸;彭利坤;林俊興;倪剛;;基于CFD的球閥閥腔流場(chǎng)的數(shù)值仿真[J];液壓與氣動(dòng);2014年11期
3 宋銀立;;我國(guó)電力閥門現(xiàn)狀及發(fā)展前景[J];通用機(jī)械;2014年07期
4 廖傳軍;滿滿;王洪銳;張翼;許光;;閥門動(dòng)密封的常用結(jié)構(gòu)、材料及特性[J];液壓與氣動(dòng);2014年05期
5 崔寶玲;尚照輝;石柯;陳德勝;林哲;;基于CFD的蝶板結(jié)構(gòu)改進(jìn)設(shè)計(jì)及數(shù)值分析[J];排灌機(jī)械工程學(xué)報(bào);2013年06期
6 張生昌;張玉林;方志明;柯愈龍;;基于CFD的球閥三維流場(chǎng)數(shù)值模擬[J];排灌機(jī)械工程學(xué)報(bào);2013年02期
7 翟江;趙勇剛;周華;;水壓軸向柱塞泵內(nèi)部空化流動(dòng)數(shù)值模擬[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2012年11期
8 何忠華;袁一星;邱微;;給水管網(wǎng)球閥局部阻力系數(shù)計(jì)算研究[J];供水技術(shù);2012年04期
9 劉建瑞;李昌;劉亮亮;向宏杰;何小可;;高溫高壓核電閘閥流固熱耦合分析[J];流體機(jī)械;2012年03期
10 朱榮生;胡自強(qiáng);楊愛玲;;雙葉片泵內(nèi)非定常流動(dòng)的數(shù)值模擬[J];排灌機(jī)械工程學(xué)報(bào);2011年01期
相關(guān)博士學(xué)位論文 前3條
1 夏冬生;柴油機(jī)氣缸套冷卻水空化流的數(shù)值模擬[D];大連海事大學(xué);2011年
2 劉匯源;硬密封高溫耐磨球閥關(guān)鍵技術(shù)研究[D];浙江大學(xué);2008年
3 于曉東;重型靜壓推力軸承力學(xué)性能及油膜態(tài)數(shù)值模擬研究[D];東北林業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前4條
1 尹波;基于CFD的數(shù)值波浪水池技術(shù)及強(qiáng)迫橫搖數(shù)值實(shí)驗(yàn)研究[D];哈爾濱工程大學(xué);2011年
2 趙希楓;基于CFD技術(shù)改善離心泵內(nèi)部空化性能的研究[D];蘭州理工大學(xué);2009年
3 羅平根;狹小通道內(nèi)電子元器件的散熱設(shè)計(jì)與研究[D];南京航空航天大學(xué);2008年
4 沈強(qiáng);袋式除塵器內(nèi)氣流場(chǎng)數(shù)值模擬[D];西南交通大學(xué);2007年
,本文編號(hào):1506259
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1506259.html