基于多特征量提取和極限學習機的軸承故障診斷方法研究
本文關鍵詞: 滾動軸承 排列熵 極限學習機 最大相關最小冗余 故障診斷 出處:《昆明理工大學》2017年碩士論文 論文類型:學位論文
【摘要】:近年來,我國科技事業(yè)得到了進一步提升,信息技術的發(fā)展帶動了工業(yè)化的進步,使得機械化生產(chǎn)日益普及。在機械的生產(chǎn)過程與應用中,機械系統(tǒng)的非計劃停機與故障停機會給企業(yè)的生產(chǎn)發(fā)展及經(jīng)濟效益帶來嚴重的損害,甚至存有人身安全隱患,造成安全事故。在旋轉(zhuǎn)機械設備的眾多零部件中,地位最高但又是最容易損壞的部件就是軸承。軸承是否能正常運行直接影響整個機械系統(tǒng)的性能與壽命,所以對滾動軸承故障診斷的方法進行研究具有重大意義。滾動軸承振動信號多表現(xiàn)為非平穩(wěn)性與非線性,同時,受周邊設備傳來的噪聲以及故障信息中所含有的短期沖擊成分的影響,使得故障特征提取有一定的難度。特征提取不全面、特征值不明顯,均會影響軸承的故障識別精度,帶來誤判甚至漏判現(xiàn)象。針對此問題,本文提出了基于多特征量提取和極限學習機的軸承故障診斷方法研究。論文的主要研究工作如下:(1)研究了滾動軸承故障的形成原因以及其振動頻率,具體分析了軸承的結(jié)構(gòu)和動力學特性,提出了幾種典型振動的基本參數(shù)。對滾動軸承故障數(shù)據(jù)采集系統(tǒng)進行學習和研究,獲得不同類型下的軸承振動數(shù)據(jù),最后,以Logistic典型非線性系統(tǒng)為驗證對象,進而驗證排列熵用于檢測非線性系統(tǒng)的動力學突變行為的可行性。(2)研究了基于排列熵和極限學習機的軸承故障類型診斷方法。通過使用多分辨奇異值分解對原始加速度振動信號進行分解,獲得三層不同細節(jié)分量D1~D3,進一步結(jié)合排列熵在信息提取方面的優(yōu)勢,構(gòu)造能表征原始加速度振動信號故障特征的特征向量,最后采用極限學習機的方法進行軸承故障類型識別,驗證了該方法的可行性和有效性。(3)研究了基于優(yōu)化MRMR和極限學習機的軸承故障類型診斷方法。對經(jīng)過多分辨SVD降噪處理的原始加速度振動信號分別求取時域、頻域和時-頻域特征量構(gòu)建混合域特征集,在特征選取上,采用加權(quán)MRMR的特征選取方式,以極限學習機分類正確率為依據(jù),從含有18個特征的混合域中最后選取出8個最優(yōu)特征向量。實驗數(shù)據(jù)分析顯示,故障辨別精度可達到97.5%,證明該方法可以有效的實現(xiàn)軸承故障類型診斷。以實際滾動軸承故障數(shù)據(jù)為例進行對比分析,結(jié)果表明基于優(yōu)化MRMR和極限學習機的軸承故障智能診斷方法比基于排列熵和極限學習機的故障診斷方法的故障識別率高,這是由于相比于特征值單一且特征不明顯的排列熵,混合域特征集更能多方面表征振動信號的內(nèi)在特征,且經(jīng)過優(yōu)化的MRMR算法準則選出來的特征子集是最具代表性的。
[Abstract]:In recent years, China's science and technology has been further promoted, the development of information technology has led to the progress of industrialization, making mechanized production increasingly popular in the production process and application of machinery. The unplanned downtime and malfunction of the mechanical system will bring serious damage to the production development and economic benefit of the enterprise, even have the personal safety hidden trouble, cause the safety accident, in many parts and components of the rotating machinery and equipment. Bearing is the highest-ranking but most easily damaged component. Whether the bearing can run normally will directly affect the performance and life of the whole mechanical system. Therefore, it is of great significance to study the fault diagnosis method of rolling bearings. The vibration signals of rolling bearings are usually non-stationary and nonlinear, and at the same time. Affected by the noise from peripheral equipments and the short term impact components contained in the fault information, it is difficult to extract the fault features. The feature extraction is not comprehensive, and the feature value is not obvious. Will affect the bearing fault identification accuracy, leading to misjudgment or even miss the phenomenon, in view of this problem. In this paper, the method of bearing fault diagnosis based on multi-feature extraction and extreme learning machine is proposed. The main research work of this paper is as follows: 1) the cause of rolling bearing fault and its vibration frequency are studied. The structure and dynamic characteristics of the bearing are analyzed in detail, and the basic parameters of several typical vibration are put forward. The fault data acquisition system of rolling bearing is studied and studied, and the bearing vibration data of different types are obtained. Finally, the typical nonlinear Logistic system is used as the verification object. Furthermore, the feasibility of using permutation entropy to detect the dynamical catastrophe behavior of nonlinear systems is verified. The fault type diagnosis method of bearing based on permutation entropy and ultimate learning machine is studied. The original acceleration vibration signal is decomposed by using multi-resolution singular value decomposition. Three layers of different detail components D _ 1 and D _ 3 are obtained. Furthermore, combining the advantage of permutation entropy in information extraction, the eigenvector which can represent the fault characteristics of the original acceleration vibration signal is constructed. Finally, the bearing fault type is identified by the extreme learning machine. The feasibility and effectiveness of the method are verified. The fault type diagnosis method of bearing based on optimized MRMR and ultimate learning machine is studied, and the time domain of the original acceleration vibration signal after multi-resolution SVD de-noising is obtained respectively. In frequency domain and time-frequency domain, the feature sets in mixed domain are constructed. In feature selection, weighted MRMR is used to select features, and the classification accuracy of extreme learning machine is taken as the basis. Finally, 8 optimal feature vectors are selected from the mixed domain with 18 features. The experimental data show that the accuracy of fault identification can reach 97.5%. It is proved that this method can effectively realize the fault type diagnosis of bearing. Take the actual rolling bearing fault data as an example to carry on the contrast analysis. The results show that the intelligent fault diagnosis method based on optimized MRMR and LLM is higher than that based on permutation entropy and LLM. This is due to the fact that, compared with the permutation entropy with a single eigenvalue and no obvious feature, the feature set in the mixed domain can represent the intrinsic characteristics of the vibration signal in many ways. And the feature subset selected by the optimized MRMR algorithm criterion is the most representative.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH133.33;TP181
【參考文獻】
相關期刊論文 前10條
1 唐德堯;共振解調(diào)故障診斷技術的特點及應用──獻給中國鐵路提速戰(zhàn)略的禮物[J];鐵道經(jīng)濟研究;2000年04期
2 顧雪平,張文朝;基于Tabu搜索技術的暫態(tài)穩(wěn)定分類神經(jīng)網(wǎng)絡的輸入特征選擇[J];中國電機工程學報;2002年07期
3 王國峰,周亦武,郭金光;軸承疲勞剝落的早期診斷方法[J];大連海事大學學報;2002年03期
4 張益純,劉振娟;滾動軸承故障分析探討[J];內(nèi)燃機配件;2000年03期
5 張穎;呂路勇;萬書亭;;沖擊脈沖法在滾動軸承故障診斷中的應用[J];石油化工設備技術;2007年04期
6 侯威;封國林;董文杰;李建平;;利用排列熵檢測近40年華北地區(qū)氣溫突變的研究[J];物理學報;2006年05期
7 劉永斌;龍潛;馮志華;劉維來;;一種非平穩(wěn)、非線性振動信號檢測方法的研究[J];振動與沖擊;2007年12期
8 程軍圣;于德介;楊宇;;基于EMD和SVM的滾動軸承故障診斷方法[J];航空動力學報;2006年03期
9 程軍圣;楊宇;于德介;;局部均值分解方法及其在齒輪故障診斷中的應用[J];振動工程學報;2009年01期
10 王娜;鄭德忠;劉永紅;;雙樹復小波包變換語音增強新算法[J];傳感技術學報;2009年07期
相關博士學位論文 前1條
1 李兆飛;振動故障分形特征提取及診斷方法研究[D];重慶大學;2013年
相關碩士學位論文 前3條
1 李葵;基于二次SVD和VPMCD的滾動軸承故障智能診斷方法研究[D];昆明理工大學;2015年
2 李杰;基于LCD和VPMCD的滾動軸承故障診斷方法[D];湖南大學;2013年
3 時建峰;基于時、頻域—小波分析和神經(jīng)網(wǎng)絡方法的齒輪箱故障診斷研究[D];太原理工大學;2008年
,本文編號:1487115
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1487115.html