大流量高水基電液比例方向閥的研究
發(fā)布時(shí)間:2018-01-26 12:06
本文關(guān)鍵詞: 電液比例方向閥 流場(chǎng)分析 液動(dòng)力 液壓沖擊 出處:《太原理工大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:目前,電液控制系統(tǒng)的電液換向閥組都是采用開(kāi)關(guān)閥,無(wú)法實(shí)現(xiàn)支架精確化的動(dòng)作,同時(shí)高壓大流量下,開(kāi)關(guān)閥的快速啟閉會(huì)產(chǎn)生液壓沖擊,這給系統(tǒng)元件帶來(lái)較大的危害,而電液比例控制技術(shù)可以很好的解決這些問(wèn)題。因此,大流量高水基電液比例方向閥的研究十分必要。本文首先對(duì)高水基開(kāi)關(guān)閥及油介質(zhì)比例閥的結(jié)構(gòu)原理進(jìn)行了分析,結(jié)合高水基閥和油介質(zhì)比例閥設(shè)計(jì)理論,設(shè)計(jì)了一款大流量高水基電液比例方向閥;贑FD技術(shù)對(duì)不同結(jié)構(gòu)參數(shù)下的電液比例方向閥流場(chǎng)特性進(jìn)行了模擬,得到了合適的結(jié)構(gòu)參數(shù);針對(duì)高壓大流量工況下主閥進(jìn)液閥芯液動(dòng)力較大的問(wèn)題,進(jìn)行了液動(dòng)力補(bǔ)償研究,研究表明,通過(guò)合理設(shè)置主閥進(jìn)液閥芯頸部尺寸以及主閥進(jìn)液閥套孔錐角的大小均可以顯著減小閥芯所受軸向穩(wěn)態(tài)液動(dòng)力。建立了電液比例方向閥的數(shù)學(xué)模型,對(duì)電液比例方向閥一些關(guān)鍵參數(shù)進(jìn)行了理論分析。結(jié)果表明:固定阻尼孔R(shí)、主閥芯復(fù)位彈簧、主閥芯控制腔面積等重要參數(shù)對(duì)電液比例方向閥穩(wěn)態(tài)及動(dòng)態(tài)特性影響較大。基于A(yíng)MESim建立了高水基電液比例方向閥控制系統(tǒng)模型,對(duì)其先導(dǎo)閥、主閥的穩(wěn)態(tài)及動(dòng)態(tài)特性進(jìn)行了研究。結(jié)果表明:在輸入電流信號(hào)中疊加顫振信號(hào)可以顯著改善先導(dǎo)閥的控制特性(輸入電流-輸出壓力特性);先導(dǎo)閥復(fù)位彈簧剛度越大,先導(dǎo)閥負(fù)載特性(壓力-流量特性)越差;固定阻尼孔R(shí)直徑越大,先導(dǎo)閥輸出壓力階躍響應(yīng)超調(diào)量越小,響應(yīng)越平穩(wěn)。主閥進(jìn)液閥芯復(fù)位彈簧剛度越大,進(jìn)液閥芯位移階躍響應(yīng)超調(diào)量越小,穩(wěn)定性越好;直線(xiàn)電流信號(hào)輸入方案下,進(jìn)液閥芯開(kāi)啟時(shí)間越長(zhǎng),產(chǎn)生的液壓沖擊越小,在不影響系統(tǒng)響應(yīng)時(shí)間時(shí),拋物線(xiàn)電流信號(hào)輸入方案與直線(xiàn)電流信號(hào)輸入方案相比可以顯著降低液壓沖擊。本文綜合運(yùn)用控制理論、計(jì)算流體動(dòng)力學(xué)理論、計(jì)算機(jī)仿真,研究了高水基電液比例方向閥的流場(chǎng)特性、穩(wěn)態(tài)及動(dòng)態(tài)特性,并對(duì)高水基電液比例方向閥進(jìn)行了結(jié)構(gòu)設(shè)計(jì)與參數(shù)優(yōu)化。本文的研究成果能夠?yàn)槊旱V液壓支架用大流量高水基電液比例方向閥的設(shè)計(jì)提供參考。
[Abstract]:At present, the electro-hydraulic directional valve group of the electro-hydraulic control system adopts the switch valve, which can not realize the accurate action of the support. At the same time, under the high pressure and large flow rate, the quick opening and closing of the switch valve will produce the hydraulic impact. This brings great harm to system components, and electro-hydraulic proportional control technology can solve these problems very well. It is very necessary to study the high flow and high water base electro-hydraulic proportional directional valve. Firstly, the structure principle of high water base switch valve and oil medium proportional valve is analyzed, and the design theory of high water base valve and oil medium proportional valve is combined. A large flow rate and high water base electro-hydraulic proportional directional valve is designed. The flow field characteristics of the electro-hydraulic proportional directional valve with different structure parameters are simulated based on CFD technology and the appropriate structural parameters are obtained. In order to solve the problem of large fluid power in the main valve core under the condition of high pressure and large flow rate, the study of hydraulic power compensation is carried out, and the research shows that. By reasonably setting the neck size of the main valve inlet valve core and the cone angle of the main valve inlet valve sleeve, the axial steady hydraulic power of the valve core can be significantly reduced. The mathematical model of electro-hydraulic proportional directional valve is established. Some key parameters of electro-hydraulic proportional directional valve are theoretically analyzed. The results show that the fixed damping hole R, the main valve core reset spring. The main valve core control cavity area and other important parameters have great influence on the steady and dynamic characteristics of electro-hydraulic proportional directional valve. Based on AMESim, the control system model of high water base electro-hydraulic proportional directional valve is established, and the pilot valve is obtained. The steady and dynamic characteristics of the main valve are studied. The results show that the flutter signal in the input current signal can significantly improve the control characteristics of the pilot valve (input current-output pressure characteristic). The greater the spring stiffness of the pilot valve is, the worse the load characteristic (pressure-flow characteristic) of the pilot valve is. The larger the R diameter of the fixed damping hole, the smaller the output pressure step response overshoot of the pilot valve, and the more stable the response. The larger the spring stiffness of the main valve inlet valve is, the smaller the displacement step response overshoot quantity is. The better the stability; Under the linear current signal input scheme, the longer the valve core opening time, the smaller the hydraulic impact, when the system response time is not affected. Compared with the linear current signal input scheme, the parabolic current signal input scheme can significantly reduce the hydraulic shock. In this paper, the control theory, computational fluid dynamics theory and computer simulation are used synthetically. The characteristics of flow field, steady state and dynamic state of high water base electro-hydraulic proportional directional valve are studied. The structure design and parameter optimization of high water base electro-hydraulic proportional directional valve are carried out. The research results in this paper can provide a reference for the design of high flow and high water base electro-hydraulic proportional directional valve for coal mine hydraulic support.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH137.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘇學(xué)臻;陳淑梅;杜恒;陳傳銘;;基于A(yíng)MESim和LabVIEW的比例閥靜態(tài)特性仿真研究[J];液壓氣動(dòng)與密封;2015年04期
2 鄧攀;陳一鳴;高云;褚乃強(qiáng);尚倫;;基于A(yíng)MESim的先導(dǎo)式比例減壓閥建模與仿真[J];液壓與氣動(dòng);2015年02期
3 王松峰;趙虎;權(quán)龍;麻慧君;;流量反饋型電液比例方向閥動(dòng)靜態(tài)特性研究[J];機(jī)械工程學(xué)報(bào);2014年08期
4 陸遠(yuǎn)望;;LHB-3E型平衡閥的穩(wěn)態(tài)液動(dòng)力補(bǔ)償分析[J];液壓與氣動(dòng);2014年04期
5 劉桓龍;洪威;王國(guó)志;晏靜江;;錐閥芯穩(wěn)態(tài)液動(dòng)力補(bǔ)償研究[J];機(jī)床與液壓;2013年19期
6 艾超;孔祥東;田德志;;先導(dǎo)式大流量電液比例方向閥建模與仿真研究[J];計(jì)算機(jī)仿真;2012年11期
7 郭q,
本文編號(hào):1465565
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1465565.html
最近更新
教材專(zhuān)著