天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)電工程論文 >

鈦合金高壓扭轉(zhuǎn)變形過程數(shù)值模擬研究

發(fā)布時(shí)間:2018-01-13 04:27

  本文關(guān)鍵詞:鈦合金高壓扭轉(zhuǎn)變形過程數(shù)值模擬研究 出處:《合肥工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: TC4鈦合金 高壓扭轉(zhuǎn) Deform-3D 數(shù)值模擬 置氫


【摘要】:鈦合金作為一種輕質(zhì)材料而被廣泛使用。高壓扭轉(zhuǎn)(high-pressure torsion,HPT)作為一種大塑性變形(severe plastic deformation,SPD)方法被廣泛應(yīng)用于各種材料的塑性加工過程中。研究鈦合金高壓扭轉(zhuǎn)變形過程,分析不同變形因素對(duì)鈦合金高壓扭轉(zhuǎn)變形過程的影響規(guī)律。對(duì)于后續(xù)鈦合金高壓扭轉(zhuǎn)實(shí)驗(yàn)的具體實(shí)施具有重要的意義。本文利用Deform-3D模擬軟件對(duì)高壓扭轉(zhuǎn)過程進(jìn)行模擬。首先利用UG造型軟件建立三維模型,然后將模型導(dǎo)入Deform-3D軟件中,從而就建立了鈦合金高壓扭轉(zhuǎn)的三維模型。通過改變鈦合金高壓扭轉(zhuǎn)變形過程中各種參數(shù),利用Deform-3D軟件對(duì)其進(jìn)行模擬,分析不同工藝因素對(duì)鈦合金高壓扭轉(zhuǎn)變形過程的影響。本文分析摩擦因子對(duì)三種典型鈦合金TA11α型鈦合金、TB6β型鈦合金、TC4α+β型鈦合金高壓扭轉(zhuǎn)變形過程中等效應(yīng)變和相對(duì)扭轉(zhuǎn)角度的影響,得到不同類型鈦合金的高壓扭轉(zhuǎn)變形規(guī)律。通過分析摩擦因子和變形溫度對(duì)TC4鈦合金高壓扭轉(zhuǎn)變形過程的影響規(guī)律,得到TC4鈦合金在高壓扭轉(zhuǎn)過程中破損系數(shù)、等效應(yīng)變、等效應(yīng)力、表面膨脹比、速度矢量的分布和變化規(guī)律。通過置氫與未置氫TC4鈦合金高壓扭轉(zhuǎn)變形過程的比較,得到置氫對(duì)TC4鈦合金高壓扭轉(zhuǎn)變形過程的影響。數(shù)值模擬結(jié)果表明:對(duì)于TA11α型鈦合金,隨著摩擦因子的增加,等效應(yīng)變先降低而后增加,相對(duì)扭轉(zhuǎn)角度先升高而后降低;對(duì)于TB6β型鈦合金,摩擦因子對(duì)其高壓扭轉(zhuǎn)變形過程中等效應(yīng)變和相對(duì)扭轉(zhuǎn)角度影響規(guī)律與TA11α型鈦合金一致;而對(duì)于TC4α+β型鈦合金,隨著摩擦因子的增加,等效應(yīng)變逐漸增加,相對(duì)扭轉(zhuǎn)角度先升高后降低最后再次升高。對(duì)于TC4鈦合金,隨著摩擦因子的增加,試樣上表面破損系數(shù)數(shù)值在0.5~0.6左右,高壓扭轉(zhuǎn)變形過程中等效應(yīng)變、表面膨脹比均增加,速度矢量的大小逐漸減小。等效應(yīng)變?cè)趶较蚝洼S向方向分布不均勻,等效應(yīng)力在徑向和軸向方向的分布較為均勻,幾乎保持在一條水平線上;隨著變形溫度的增加,試樣上表面的破損系數(shù)變化維持在0.6~0.9左右。隨著變形溫度的增加,高壓扭轉(zhuǎn)過程中等效應(yīng)變和速度矢量的大小逐漸增加,等效應(yīng)力和表面膨脹比的大小均逐漸減小。等效應(yīng)變?cè)趶较蚝洼S向方向分布不均勻,等效應(yīng)力在徑向和軸向方向分布較為均勻,幾乎保持在一條水平線上。置氫能夠改善TC4鈦合金高壓扭轉(zhuǎn)坯料的表面質(zhì)量,能夠使得變形深入到坯料內(nèi)部,并且使得變形均勻。本文模擬結(jié)果表明不同類型鈦合金材料高壓扭轉(zhuǎn)變形過程不同。摩擦因子越大越有利于高壓扭轉(zhuǎn)過程的進(jìn)行,變形溫度越高越有利于塑性變形的進(jìn)行,實(shí)際難以實(shí)現(xiàn)高溫下鈦合金的高壓扭轉(zhuǎn)過程。置氫對(duì)于鈦合金高壓扭轉(zhuǎn)過程是有益的。
[Abstract]:Titanium alloy is widely used as a light material. High pressure torsion. HPT) as a kind of large plastic deformation severe plastic deformation. SPD method is widely used in the plastic processing of various materials. The high pressure torsional deformation process of titanium alloy is studied. The influence of different deformation factors on the high-pressure torsional deformation process of titanium alloy is analyzed. It is of great significance to carry out the subsequent high-pressure torsion experiment of titanium alloy. In this paper, Deform-3D software is used to simulate the deformation of titanium alloy. The high-pressure torsion process is simulated. Firstly, the three-dimensional model is built by UG modeling software. Then the model is imported into Deform-3D software, and a three-dimensional model of high pressure torsion of titanium alloy is established. By changing the parameters of the process of high pressure torsion deformation of titanium alloy. The effects of different process factors on the high-pressure torsional deformation of titanium alloy were analyzed by Deform-3D software. The friction factors on three typical titanium alloys TA11 偽 type titanium alloy were analyzed in this paper. The effect of equivalent strain and relative torsion angle on TB6 尾 titanium alloy TC4 偽 尾 titanium alloy during high pressure torsional deformation. The effects of friction factor and deformation temperature on the high-pressure torsional deformation of TC4 titanium alloy were analyzed. The damage coefficient, equivalent strain, equivalent stress and surface expansion ratio of TC4 titanium alloy under high pressure torsion were obtained. The distribution and variation of velocity vector. The comparison of the torsional deformation process of TC4 titanium alloy with and without hydrogen insertion was carried out at high pressure. The effect of hydrogen insertion on the high pressure torsional deformation of TC4 titanium alloy is obtained. The numerical simulation results show that for TA11 偽 titanium alloy, the equivalent strain decreases first and then increases with the increase of friction factor. The relative torsion angle increased first and then decreased; For TB6 尾 titanium alloy, the effect of friction factor on equivalent strain and relative torsion angle during high pressure torsion deformation is consistent with that of TA11 偽 titanium alloy. For TC4 偽 尾 titanium alloy, the equivalent strain increases gradually with the increase of friction factor, the relative torsion angle increases first, then decreases and then rises again. For TC4 titanium alloy, the equivalent strain increases gradually with the increase of friction factor. With the increase of friction factor, the damage coefficient of the upper surface of the specimen is about 0.5 ~ 0.6, and the equivalent strain and the surface expansion ratio increase in the process of high-pressure torsional deformation. The distribution of equivalent strain is not uniform in radial and axial direction, and the distribution of equivalent stress in radial and axial direction is more uniform, and the equivalent strain is almost kept at a horizontal line. With the increase of deformation temperature, the change of the damage coefficient of the upper surface of the specimen is maintained at 0.6 ~ 0.9. With the increase of deformation temperature, the equivalent strain and velocity vector increase gradually in the process of high-pressure torsion. The magnitude of equivalent stress and surface expansion ratio decrease gradually. The distribution of equivalent strain is not uniform in radial and axial directions, and the distribution of equivalent stress is more uniform in radial and axial directions. It can improve the surface quality of TC4 titanium alloy high pressure torsion blank and make the deformation go deep into the blank. The simulation results show that different types of titanium alloy materials have different high-pressure torsional deformation process. The larger the friction factor is, the more favorable the high-pressure torsion process is. The higher the deformation temperature is, the more favorable the plastic deformation is. It is difficult to realize the high-pressure torsion process of titanium alloy at high temperature, and the hydrogen insertion is beneficial to the high-pressure torsion process of titanium alloy.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.23;TG306

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 金駟;汪大年;;測(cè)定擠壓變形過程中摩擦因子值的新方法——等杯徑雙杯復(fù)合擠壓[J];模具技術(shù);1987年05期

2 陳尚偉;;冪律流體湍流摩擦因子的簡(jiǎn)化計(jì)算式[J];化學(xué)世界;1991年11期

3 劉學(xué)敏;田繼紅;劉建生;劉金豪;;熱反擠潤滑劑摩擦因子預(yù)測(cè)及模具磨損分析[J];太原科技大學(xué)學(xué)報(bào);2012年04期

4 蔡洪能,孟繁森,史耀武;焊接扭轉(zhuǎn)變形的試驗(yàn)研究[J];焊接技術(shù);1994年02期

5 田繼紅;秦敏;劉建生;;Mn18Cr18N鋼高溫摩擦因子測(cè)定及其應(yīng)用[J];礦山機(jī)械;2009年12期

6 朱法銀,孫偉香,李毅然;環(huán)空中軸向?qū)恿鞯腇anning摩擦因子[J];勝利油田職工大學(xué)學(xué)報(bào);1999年02期

7 李達(dá)人;劉祖巖;于洋;王爾德;;W-40%Cu熱加工摩擦因子與換熱系數(shù)測(cè)定[J];粉末冶金技術(shù);2009年03期

8 江理建;呂海峰;石鳳健;王亮;;多軸壓縮坯料變形的有限元分析[J];熱加工工藝;2009年07期

9 張磊;王曉艷;朱麗;李波;;電感耦合等離子體原子發(fā)射光譜法測(cè)定TC4鈦合金中主量元素鋁和釩[J];理化檢驗(yàn)(化學(xué)分冊(cè));2011年06期

10 梁春雷;李曉延;鞏水利;陳俐;;TC4鈦合金薄板激光焊接頭疲勞性能研究[J];材料工程;2006年04期

相關(guān)重要報(bào)紙文章 前2條

1 本報(bào)實(shí)習(xí)記者 蔣文雯 通訊員 羅耀華;寶鋼數(shù)值模擬研究和應(yīng)用領(lǐng)跑鋼鐵行業(yè)[N];中國冶金報(bào);2012年

2 通訊員 朱江 馮明農(nóng);風(fēng)能項(xiàng)目組研討數(shù)值模擬產(chǎn)品共享[N];中國氣象報(bào);2010年

相關(guān)博士學(xué)位論文 前3條

1 楊文彬;幾類反應(yīng)擴(kuò)散模型的動(dòng)力學(xué)行為及其數(shù)值模擬[D];陜西師范大學(xué);2015年

2 郄思遠(yuǎn);多級(jí)環(huán)流裝置的流體力學(xué)研究與其在分離過程中的應(yīng)用[D];天津大學(xué);2014年

3 黃利忠;庫特兩相流中固粒運(yùn)動(dòng)與碰撞的數(shù)值模擬[D];浙江大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 任娟莉;基于歐拉公式的摩擦因子求解算法設(shè)計(jì)[D];西安工業(yè)大學(xué);2015年

2 胡煜濤;40-T混合磁體外超導(dǎo)線圈迫流氦流動(dòng)摩擦因子分析[D];中國科學(xué)技術(shù)大學(xué);2017年

3 張植瓊;不同強(qiáng)化模型下H62黃銅模壓形變的有限元模擬[D];福州大學(xué);2014年

4 李小勇;TC4鈦合金大規(guī)格鑄錠及棒材生產(chǎn)工藝研究[D];西安建筑科技大學(xué);2015年

5 吳中元;基于數(shù)值模擬的隧道窯能耗優(yōu)化方法研究[D];廣東工業(yè)大學(xué);2016年

6 薛洪亮;熱電自冷卻系統(tǒng)數(shù)值模擬與實(shí)驗(yàn)研究[D];吉林大學(xué);2016年

7 李?yuàn)?O_2/CO_2氛圍下天然氣燃燒數(shù)值模擬及熱物性檢測(cè)研究[D];長(zhǎng)江大學(xué);2016年

8 李海濤;粉煤灰固化充填密閉特性參數(shù)數(shù)值模擬研究[D];西安科技大學(xué);2015年

9 王譚;立交橋與地鐵站共站位條件下施工順序?qū)囌咀冃渭皟?nèi)力的影響[D];華南理工大學(xué);2016年

10 應(yīng)業(yè)勇;TC4鈦合金激光焊接變形與光致等離子體的行為研究[D];湖南大學(xué);2016年



本文編號(hào):1417474

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/1417474.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1051c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com