大流量電液換向閥動態(tài)特性仿真及流場分析
本文關(guān)鍵詞:大流量電液換向閥動態(tài)特性仿真及流場分析 出處:《太原理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 電液換向閥 動態(tài)特性 AMESim仿真 流場數(shù)值模擬
【摘要】:隨著采煤技術(shù)向高產(chǎn)高效方向發(fā)展,液壓支架的“速度”性能對綜采工作面效率的影響越來越顯著。目前常用的性能良好的大流量電液換向閥的額定流量為400L/min,不能滿足支架進一步提升承受阻力,增大移動速度的要求。因此,需要增大電液換向閥的額定流量,對電液換向閥進行大流量的研發(fā)愈發(fā)重要。 本文對某常用的進口電液換向閥結(jié)構(gòu)特點和工作原理進行分析,對其關(guān)鍵零部件受力分析,進而推導(dǎo)出電液換向閥的數(shù)學(xué)模型,在此基礎(chǔ)上對主閥進行設(shè)計計算,設(shè)計了一款大流量電液換向閥。首先運用Matlab軟件對新設(shè)計的大流量電液換向閥模型進行仿真,得到其初始參數(shù)下的動態(tài)特性,,然后利用系統(tǒng)建模動態(tài)仿真軟件AMESim對電液換向閥系統(tǒng)進行動態(tài)特性分析,最后運用流體動力學(xué)分析軟件Fluent對電液換向閥進行流場仿真。 在AMESim平臺上,建立了換向閥電液控制系統(tǒng),分析閥芯位移、閥芯速度、出口壓力與出口流量等特性。研究結(jié)果表明:主閥芯在0.14s開始運動,0.23s可實現(xiàn)閥口穩(wěn)定開啟,閥芯運動平穩(wěn),閥芯出口流量達到穩(wěn)定值時為1013L/min。另外,研究了閥芯行程、閥芯錐角角度、主閥節(jié)流孔直徑和彈簧力等關(guān)鍵參數(shù)對換向閥閥芯位移、閥芯速度、出口流量與壓力的影響,選取了合理的參數(shù)值。 利用CFD計算流體力學(xué)軟件Fluent對大流量電液換向閥內(nèi)部流場進行仿真分析,得到了流場的靜壓力分布云圖、速度分布云圖、速度矢量圖和湍動能分布云圖等特性曲線。通過對進油工況P-A及回油工況A-T兩種情況的仿真結(jié)果的分析得到,大流量電液換向閥內(nèi)部壓降分布均勻,沒有明顯的漩渦區(qū)。在此基礎(chǔ)上,本文進一步討論了在不同開口度、不同進液閥套孔錐角和不同環(huán)形腔直徑的情況下,主閥內(nèi)部流場的特性,結(jié)果表明:隨著開口度的增大,最大速度區(qū)域面積增大,漩渦區(qū)面積和強度減小,這樣加快了主閥的開啟時間,有利于提高液壓支架的工作速度,也有利于減輕閥芯的磨損和沖擊。通過對大流量電液換向閥不同進液閥套孔錐角進行仿真分析,驗證了斜孔出流有利于減小漩渦強度,對錐角角度的選取提供了理論依據(jù)。此外,當(dāng)環(huán)形腔外徑增大時,湍動能的損失減小,主閥進出口的壓力損失減小,能夠有效提高閥的通流能力。
[Abstract]:With the development of coal mining technology to the high yield and high efficiency, hydraulic support "speed" on the performance of fully mechanized working face efficiency effect is more significant. The rated flow of currently used good performance of high flow electro hydraulic valve for 400L/min, support to further enhance the bearing resistance cannot meet the requirements, increasing movement speed. Therefore, the need for additional the flow increases the electro-hydraulic valve, the development of large flow of electro-hydraulic reversing valve is more and more important.
This paper analyzes some commonly used imported electro-hydraulic valve structure characteristic and work principle of force analysis of the key parts, then deduces the mathematical model of the electro-hydraulic valve, the main valve on the basis of the design, design of a large flow of electro-hydraulic valve. The first is simulated with Matlab software the new design flow of the electro-hydraulic valve model, the dynamic features of the initial parameters, and then use the system modeling and dynamic simulation software AMESim to study the dynamic characteristic of the electro-hydraulic valve system, finally using fluid dynamics analysis software Fluent numerical simulation of the electro-hydraulic valve.
On the platform of AMESim, a valve electro-hydraulic control system, valve spool displacement, velocity analysis, outlet pressure and outlet flow characteristics. The results show that: the main valve to start the movement in 0.14s and 0.23s can realize stable valve opening, valve movement smoothly, valve outlet flow reaches a stable value for 1013L/min. in research the spool stroke, the valve cone angle, the key parameters of the main valve orifice diameter and spring force the valve spool displacement, spool speed, influence the export flow and pressure, choosing proper parameter values.
The computational fluid dynamics software Fluent to simulate the flow of the electro-hydraulic valve internal flow field by using CFD, the static pressure distribution of flow field, velocity distribution, velocity vector and turbulent kinetic energy distribution characteristic curve. Through the analysis of simulation results of inlet conditions of P-A and oil return conditions A-T two cases the flow of the electro-hydraulic valve internal pressure distribution, no obvious vortex zone. On this basis, the paper further discusses the opening in different, different liquid inlet valve sleeve hole cone angle and different annular cavity under the condition that the diameter of the main valve internal flow characteristics, the results show that with the increase of opening the maximum speed of the area increases, reducing the area and intensity of vortex, thus speeding up the opening time of the main valve, is conducive to the improvement of the hydraulic support working speed, but also help to reduce the abrasion and impact on the spool. Simulation analysis of high flow electro hydraulic valve with different inlet valve sleeve hole cone angle, verify the inclined hole flow to reduce the vortex intensity, provides a theoretical basis for the selection of cone angle. In addition, with the increase of cavity diameter, turbulent kinetic energy loss is reduced, the pressure loss of the main valve import and export decreases, can effectively improve the valve flow capacity.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD355.4;TH137.52
【參考文獻】
相關(guān)期刊論文 前10條
1 付文智;李明哲;蔡中義;張傳敏;;滑閥式換向閥三維流體速度場的數(shù)值模擬[J];哈爾濱工業(yè)大學(xué)學(xué)報;2007年01期
2 朱鈺;;液控?fù)Q向閥內(nèi)流場及動態(tài)特性的數(shù)值模擬[J];哈爾濱工業(yè)大學(xué)學(xué)報;2012年05期
3 楊國來;葉清;林男;;純水液壓錐閥閥口流場氣穴的CFD研究[J];機床與液壓;2007年01期
4 李建心;劉效東;;液動力對換向閥作用的ANSYS有限元分析[J];機床與液壓;2010年17期
5 何曉暉;孫宏才;程健生;李峰;;基于動網(wǎng)格的液壓閥閥芯啟閉中的液動力分析[J];解放軍理工大學(xué)學(xué)報(自然科學(xué)版);2011年05期
6 孫長春;;液壓支架的現(xiàn)狀與發(fā)展思路[J];科技情報開發(fā)與經(jīng)濟;2009年06期
7 廉自生;王芳;;高水基電磁先導(dǎo)閥三維流動特性的可視化模擬[J];流體傳動與控制;2006年05期
8 吳義順;;液壓支架在綜采工作面中的應(yīng)用[J];煤炭科技;2006年01期
9 羅恩波;國內(nèi)外液壓支架現(xiàn)狀及我國的發(fā)展趨勢[J];煤礦機電;2000年03期
10 王國法,朱軍,張良,李首濱;液壓支架電液控制系統(tǒng)的分析和展望[J];煤礦開采;2000年02期
本文編號:1372842
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1372842.html