天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

小型垂直軸阻力型風(fēng)力發(fā)電機功率計算方法分析

發(fā)布時間:2018-10-16 15:57
【摘要】:在人類生存和發(fā)展的過程中,能源毫無疑問是其重要的物質(zhì)基礎(chǔ),因此能源成為當(dāng)今世界政治、經(jīng)濟、軍事、外交等所關(guān)注的焦點也是必然的。但是隨著一次能源的不斷消耗,其儲量也越來越少,如今全世界各個國家都越來越重視對可再生能源的研究開發(fā),以此來應(yīng)對正在不斷加重的能源危機問題?稍偕茉淳褪侵赋顺R(guī)能源外在自然界中可以不斷再生、持續(xù)利用、取之不盡、用之不竭的能源資源,它包括風(fēng)能、太陽能、生物質(zhì)能、地?zé)崮、海洋能等能源資源。其中風(fēng)能的優(yōu)勢非常之大,比如巨大的儲量、應(yīng)用技術(shù)相對成熟、比較低廉的成本、簡單的利用過程和污染問題很少等特點,這便使風(fēng)能在眾多可再生能源中脫穎而出。在風(fēng)力機將風(fēng)能轉(zhuǎn)變?yōu)闄C械能的過程中,受風(fēng)力作用而旋轉(zhuǎn)的風(fēng)輪是其最主要的部件,因此根據(jù)風(fēng)輪的結(jié)構(gòu)及其在氣流中的位置我們通常把風(fēng)力機分為兩大類:水平軸風(fēng)力機和垂直軸風(fēng)力機。水平軸風(fēng)力機是傳統(tǒng)的風(fēng)力機機型,技術(shù)相比于垂直軸風(fēng)力機要成熟,生產(chǎn)批量大,已經(jīng)成為當(dāng)今風(fēng)力機的主流機型。但由于其種種先天性的不足(如啟動風(fēng)速高、工作噪音大、抗風(fēng)能力差等),使得其進一步的開發(fā)受到了抑制,而垂直軸風(fēng)力機卻具有啟動風(fēng)速低,氣動噪音小,受風(fēng)性能更好的特點,因此人們開始把注意力逐漸聚焦到垂直軸風(fēng)力機身上,各國的風(fēng)電研究者也正在努力研制更多新形式的垂直軸風(fēng)力機。在對垂直軸風(fēng)力發(fā)電機的研發(fā)改進過程中,我們一直以使其能更好的利用風(fēng)能資源為目標,因此風(fēng)力機輸出功率的多少便成為我們比較關(guān)注的問題了。綜上所述,本文應(yīng)用了計算流體方面的相關(guān)知識,針對小型垂直軸風(fēng)力發(fā)電機平均功率的計算方法進行了研究分析。 首先,對有關(guān)垂直軸風(fēng)力發(fā)電機的概念以及與其功率計算相關(guān)的基本理論進行了論述,在此基礎(chǔ)上,利用計算流體理論并結(jié)合Matlab軟件編程計算的方法,來對小型垂直軸阻力S型風(fēng)力機的平均功率進行具體的計算,并得到了比較準確的結(jié)果。并在計算分析的過程中提出了計算垂直軸風(fēng)力機功率的具體方法及其計算所要用到的相關(guān)計算公式,根據(jù)計算結(jié)果得出了風(fēng)速分別與平均功率、風(fēng)能利用系數(shù)之間的關(guān)系曲線。 然后,應(yīng)用計算流體力學(xué)軟件/ANSYS Fluent對垂直軸回旋式阻力型風(fēng)力發(fā)電機的功率進行了模擬計算。對風(fēng)力機進行二維模型簡化,并完成流場網(wǎng)格的劃分,設(shè)定邊界條件具體賦值,開始模擬計算。在計算過程中對殘差和葉片受到的力矩系數(shù)進行監(jiān)測,得到殘差曲線和轉(zhuǎn)矩監(jiān)測曲線。得到具體扭矩數(shù)值M,根據(jù)功率計算公式就可得理論值平均功率P。 最后,為驗證上述應(yīng)用Fluent軟件對垂直軸風(fēng)力機功率模擬計算的正確性,設(shè)計組裝了一套功率檢測系統(tǒng)來對已有風(fēng)力機進行動率檢測,通過實驗來測量收集風(fēng)力機的功率數(shù)值,并與計算機模擬計算的結(jié)果做對比,從而驗證模擬計算風(fēng)力機功率的方法的正確性。經(jīng)過實驗驗證了以上方法是正確可行的。
[Abstract]:In the course of human existence and development, energy is undoubtedly an important material base, so energy becomes the focus of the world politics, economy, military, diplomacy and so on. But with the constant consumption of geothermal energy and fewer reserves, the world's countries are increasingly paying more and more attention to renewable energy research and development to address the ongoing energy crisis. Renewable energy refers to energy resources such as wind energy, solar energy, biomass energy, geothermal energy and ocean energy, in addition to the conventional energy sources, which can be regenerated continuously, continuously utilized and inexhaustible. The advantage of wind energy is very large, such as huge reserves, relatively mature application technology, low cost, simple utilization process and little pollution problem, which makes wind energy stand out in many renewable energy sources. In the process of converting wind energy into mechanical energy by wind turbine, wind wheel rotating by wind force is the main component of wind turbine. Therefore, according to the structure of wind wheel and its position in airflow, the wind turbine is divided into two main categories: horizontal axis wind turbine and vertical axis wind turbine. The horizontal axis wind turbine is a traditional wind turbine model. Compared with the vertical axis wind turbine, the horizontal axis wind turbine is mature, the production batch is large, and it has become the mainstream model of the wind turbine of the present day. However, because of its congenital insufficiency (such as high wind speed, large work noise, poor wind resistance, etc.), the development of the vertical axis wind turbine is restrained, and the vertical axis wind turbine has the characteristics of low starting wind speed, small pneumatic noise and better wind performance. So people are beginning to focus their attention on vertical-axis wind turbines, and wind-wind researchers in countries are working to develop more new forms of vertical-axis wind turbines. In the development and improvement of vertical axis wind driven generator, we have always made it possible to make use of wind energy resources as the target, so the output power of wind turbine has become a concern of us. To sum up, this paper applies the related knowledge of computational fluid, and studies the calculation method of the average power of the small vertical axis wind power generator. Firstly, the concept of the vertical axis wind driven generator and the basic theory related to its power calculation are discussed. On the basis of this, the computational fluid theory is used and programmed with Matlab software. In this paper, the average power of the small vertical-axis resistance S-type wind turbine is calculated, and it is more accurate. As a result, a specific method for calculating the power of the vertical axis wind turbine and its calculation formula are presented in the course of the calculation and analysis. The relation between the wind speed and the average power and the wind energy utilization coefficient is obtained according to the calculation result. Then, the power of the vertical-axis rotary drag-type wind-driven generator is calculated by using CFD software/ ANSYS Fluent. The two-dimensional model of the wind turbine is simplified, the division of the flow field grid is completed, the boundary conditions are set, The moment coefficient of the residual and the blade is monitored during the calculation to obtain the residual curve and the rotation. Moment monitoring curve. The specific torque value M is obtained, and the theoretical value can be obtained according to the power calculation formula. Finally, in order to verify the correctness of the above-mentioned Fluent software for vertical axis wind turbine power simulation, a set of power detection system was designed and assembled for the existing wind. The power value of the wind turbine is measured by experiments, and compared with the result of computer simulation, the calculation and calculation of the wind turbine's work is verified. The correctness of the method is verified by the experiment.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM315

【參考文獻】

相關(guān)期刊論文 前10條

1 胡德福;;應(yīng)變式扭矩傳感器的設(shè)計技術(shù)[J];船舶工程;2011年04期

2 陳進;張曉;王旭東;;通用風(fēng)力機翼型氣動特性數(shù)值模擬[J];重慶工學(xué)院學(xué)報(自然科學(xué)版);2009年07期

3 程明;張運乾;張建忠;;風(fēng)力發(fā)電機發(fā)展現(xiàn)狀及研究進展[J];電力科學(xué)與技術(shù)學(xué)報;2009年03期

4 趙煒;李濤;;國外風(fēng)力發(fā)電機的現(xiàn)狀及前景展望[J];電力需求側(cè)管理;2009年02期

5 李永東;;中國風(fēng)力發(fā)電的發(fā)展現(xiàn)狀和前景[J];電氣時代;2006年03期

6 張仲柱;王會社;趙曉路;徐建中;;水平軸風(fēng)力機葉片氣動性能研究[J];工程熱物理學(xué)報;2007年05期

7 易躍春;風(fēng)力發(fā)電現(xiàn)狀、發(fā)展前景及市場分析[J];國際電力;2004年05期

8 熊莉芳;林源;李世武;;-湍流模型及其在FLUENT軟件中的應(yīng)用[J];工業(yè)加熱;2007年04期

9 方海鑫,曾令可,王慧,程小蘇,劉平安;FLUENT軟件的應(yīng)用及其污染物生成模型分析[J];工業(yè)爐;2004年03期

10 翟建華;計算流體力學(xué)(CFD)的通用軟件[J];河北科技大學(xué)學(xué)報;2005年02期



本文編號:2274861

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/zhengzhijingjixuelunwen/2274861.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8a71a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com