基于PSO-LSSVM的中小企業(yè)信用風(fēng)險(xiǎn)評價(jià)研究
本文選題:中小企業(yè) + 商業(yè)銀行 ; 參考:《河北工程大學(xué)》2017年碩士論文
【摘要】:近年來,金融危機(jī)發(fā)生的次數(shù)越來越多,中小企業(yè)融資難的問題暴露的越來越明顯,直接影響著我國經(jīng)濟(jì)發(fā)展。因此商業(yè)銀行以及政府都應(yīng)該對此高度關(guān)注。商業(yè)銀行在信用風(fēng)險(xiǎn)的管理上采取了許多新的辦法,雖然有所緩解但是效果不是很明顯。如果想解決中小企業(yè)融資難,就要對其原因進(jìn)行分析,造成中小企業(yè)融資難的根本原因是商業(yè)銀行和中小企業(yè)信息不對稱造成的。如果想解決該問題就應(yīng)該找到能夠準(zhǔn)確評估中小企業(yè)信用風(fēng)險(xiǎn)的方法,商業(yè)銀行對中小企業(yè)的信用進(jìn)行準(zhǔn)確的評估對解決中小企業(yè)融資難起到很大的作用。本文站在商業(yè)銀行的角度對中小融資企業(yè)信用風(fēng)險(xiǎn)的評估,首先通過分析中小企業(yè)特點(diǎn),構(gòu)建中小企業(yè)的信用風(fēng)險(xiǎn)評價(jià)指標(biāo)體系,對比分析現(xiàn)有信用風(fēng)險(xiǎn)評價(jià)方法的優(yōu)缺點(diǎn),確定用支持向量機(jī)方法進(jìn)行評估,由于中小企業(yè)的特殊性,對支持向量機(jī)進(jìn)行了改進(jìn)和優(yōu)化,將最小二乘法與支持向量機(jī)相結(jié)合,并且用粒子群算法對其進(jìn)行了參數(shù)的優(yōu)化,對中小企業(yè)是否違約進(jìn)行了準(zhǔn)確的分類,證明了基于PSO-LSSVM模型在對中小企業(yè)的信用風(fēng)險(xiǎn)評估的優(yōu)越性,為商業(yè)銀行提供了一種很好的對中小企業(yè)進(jìn)行信用風(fēng)險(xiǎn)評估的方法。
[Abstract]:In recent years, the number of financial crises has become more and more, the problem of financing difficult for small and medium-sized enterprises is becoming more and more obvious, which directly affects the economic development of our country. Therefore, commercial banks and the government should pay much attention to this. It is very obvious that if it is difficult to solve the financing of small and medium-sized enterprises, it is necessary to analyze the reasons for the difficulty of financing for small and medium-sized enterprises. If we want to solve this problem, we should find a way to accurately assess the risk of SMEs' credit, and the commercial banks are to small and medium enterprises. The accurate evaluation of credit plays a very important role in solving the financing difficulties of small and medium-sized enterprises. This paper is to evaluate the credit risk of small and medium-sized financing enterprises from the perspective of commercial banks. First, through the analysis of the characteristics of small and medium-sized enterprises, the credit risk evaluation index system of small and medium-sized enterprises is constructed, and the advantages and disadvantages of the existing credit risk evaluation methods are compared. It is determined that the support vector machine is used for evaluation. Because of the particularity of the small and medium enterprises, the support vector machine is improved and optimized. The least square method is combined with the support vector machine, and the particle swarm optimization is used to optimize the parameters of the SVM. It has carried out an accurate classification to the breach of contract for small and medium enterprises, and proved that the PSO-LSSVM model is based on the model. The superiority of the model in the credit risk assessment of small and medium-sized enterprises provides a good way for the commercial banks to conduct credit risk assessment for SMEs.
【學(xué)位授予單位】:河北工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F276.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔文巖;孟相如;李紀(jì)真;王明鳴;陳天平;王坤;;基于粗糙集粒子群支持向量機(jī)的特征選擇方法[J];微電子學(xué)與計(jì)算機(jī);2015年01期
2 樓裕勝;;基于模糊神經(jīng)網(wǎng)絡(luò)的企業(yè)信用風(fēng)險(xiǎn)評估模型研究[J];中南大學(xué)學(xué)報(bào)(社會科學(xué)版);2013年05期
3 姚瀟;余樂安;;模糊近似支持向量機(jī)模型及其在信用風(fēng)險(xiǎn)評估中的應(yīng)用[J];系統(tǒng)工程理論與實(shí)踐;2012年03期
4 唐建榮;譚春暉;;基于支持向量機(jī)的上市公司信用風(fēng)險(xiǎn)評估研究[J];統(tǒng)計(jì)與決策;2010年10期
5 柯孔林;;基于粗糙集與支持向量機(jī)的企業(yè)短期貸款違約判別[J];控制理論與應(yīng)用;2009年12期
6 宋榮威;;信貸風(fēng)險(xiǎn)度量的Logit模型檢驗(yàn)——來自行業(yè)內(nèi)上市公司的經(jīng)驗(yàn)數(shù)據(jù)[J];電子科技大學(xué)學(xué)報(bào)(社科版);2007年05期
7 魯海波;徐云;;基于支持向量機(jī)的企業(yè)破產(chǎn)分析[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2007年12期
8 徐曉燕;王昱;張斌;;一種集成logistic回歸與支持向量機(jī)的判別分析規(guī)則[J];系統(tǒng)工程理論與實(shí)踐;2007年04期
9 邵信光;楊慧中;陳剛;;基于粒子群優(yōu)化算法的支持向量機(jī)參數(shù)選擇及其應(yīng)用[J];控制理論與應(yīng)用;2006年05期
10 賈小勇;徐傳勝;白欣;;最小二乘法的創(chuàng)立及其思想方法[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
,本文編號:1866513
本文鏈接:http://sikaile.net/jingjilunwen/xmjj/1866513.html