天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

公開信息對P2P網(wǎng)絡借貸行為的影響及信息甄別

發(fā)布時間:2018-06-04 18:08

  本文選題:P2P網(wǎng)絡借貸 + 公開信息。 參考:《華僑大學》2017年碩士論文


【摘要】:業(yè)內(nèi)將2013年稱為互聯(lián)網(wǎng)金融元年,這一年在互聯(lián)網(wǎng)快車的帶動下,金融行業(yè)迅速衍生出了一系列創(chuàng)新活動。2007年6月,國內(nèi)第一家P2P網(wǎng)絡借貸平臺“拍拍貸”成功創(chuàng)立,緊接著與之具有同樣業(yè)務形態(tài)的紅嶺創(chuàng)投、人人貸等平臺也先后出現(xiàn),P2P網(wǎng)絡借貸作為一種新的融資渠道正在蓬勃發(fā)展;I資人在平臺借款時要提供個人信息等相關(guān)資料,這些信息會在借款標的頁面公開顯示。由于金融市場中信息不對稱普遍存在,P2P網(wǎng)絡借貸平臺發(fā)揮的雖是金融中介作用,但多數(shù)只是對籌資人提供的材料進行審核,因此籌資人為了提高借款成功率可能會隱瞞自身情況或提供虛假信息,投資人在選擇借款標的時需要對公開信息的真實性進行甄別。本文使用Probit模型,在模型中加入了籌資人的網(wǎng)絡聲譽、工作狀況和借款描述變量,并創(chuàng)新性的使用句讀對借款描述的文本可讀性進行量化,以人人貸平臺數(shù)據(jù)為基礎(chǔ),研究公開信息對P2P網(wǎng)絡借貸行為(包括借款成功和還款違約)的影響,并通過對比兩者的影響因素,觀察是否存在信息噪音,即對投資人而言具一定欺騙性的信息,從而幫助投資者進行信息甄別。研究結(jié)果顯示:(1)籌資人的網(wǎng)絡聲譽影響借款成功率,且能夠客觀反映其違約風險,為投資人提供較為準確的參考信息;I資人的借款還清率越高、逾期次數(shù)越少,表明其違約風險越低,因而較受投資人的青睞,借款成功率較高。(2)籌資人所提供的工作狀況等個人信息影響借款成功率,但在揭示還款違約方面存在信息噪音。對于一些難以認證的個人信息(如公司規(guī)模、收入),籌資人可能存在虛假披露情況,此類信息將會對投資人造成干擾,使其不能準確判斷籌資人的違約風險。(3)借款描述影響借款成功率,但在揭示籌資人違約風險方面存在信息噪音。借款描述的字數(shù)越多、文本可讀性越強,則借款成功率越高。但財務狀況或誠信水平較差的籌資人可能會借此進行偽裝,提供虛假的借款描述來欺騙投資人。
[Abstract]:The industry called 2013 the first year of Internet finance, led by the Internet Express, quickly spawned a series of innovative activities. In June 2007, PPDAI, the country's first P2P online lending platform, was founded successfully. Then with the same business form of Hongling Venture, people loan and other platforms have emerged P2P network lending as a new financing channel is booming. The fundraiser should provide personal information and other relevant information when borrowing on the platform, which will be publicly displayed on the loan subject page. Because of the widespread information asymmetry in financial markets, P2P network lending platforms play a financial intermediary role, but most of them only audit the materials provided by the financiers. Therefore, in order to improve the success rate of borrowing, the financier may conceal his own information or provide false information, and investors should identify the authenticity of the public information when selecting the subject matter of the loan. This paper uses Probit model to add the network reputation, work condition and loan description variables of the fundraiser, and innovatively uses sentence reading to quantify the readability of the loan description, which is based on the data of everyone's loan platform. This paper studies the influence of public information on P2P network borrowing behavior (including loan success and repayment default), and by comparing the two factors, we observe whether there is information noise, that is, information that is deceptive to investors. To help investors identify information. The research results show that the network reputation of the fundraiser affects the success rate of borrowing, and can objectively reflect the default risk, and provide more accurate reference information for investors. The higher the repayment rate and the less overdue, the lower the risk of default, and therefore more favored by investors. The higher the success rate of borrowing is, the higher the personal information such as the working condition provided by the financier affects the success rate of borrowing. But there is information noise in revealing default payments. For personal information that is difficult to authenticate (such as the size of the company, the revenue, the potential for false disclosure on the part of the financier, such information will interfere with investors, Therefore, it can not accurately judge the default risk of the financier. 3) the loan description affects the loan success rate, but there is information noise in revealing the default risk of the financier. The more words the loan describes and the more readable the text, the higher the success rate. But financiers with poor financial standing or integrity may use it to disguise themselves by providing false loan descriptions to deceive investors.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F724.6;F832.4

【參考文獻】

相關(guān)期刊論文 前10條

1 彭紅楓;趙海燕;周洋;;借款陳述會影響借款成本和借款成功率嗎?——基于網(wǎng)絡借貸陳述的文本分析[J];金融研究;2016年04期

2 李思明;肖忠意;;社交朋友網(wǎng)絡資本與P2P網(wǎng)貸行為選擇研究[J];上海金融;2016年04期

3 孫武軍;樊小瑩;;從業(yè)經(jīng)歷和教育背景是否能提高借貸成功率?——來自P2P平臺的經(jīng)驗證據(jù)[J];中央財經(jīng)大學學報;2016年03期

4 呂勇斌;姜藝偉;張小青;;我國P2P平臺網(wǎng)絡借貸逾期行為和羊群行為研究[J];統(tǒng)計與決策;2016年04期

5 岳中剛;周勤;楊小軍;;眾籌融資、信息甄別與市場效率——基于人人貸的實證研究[J];經(jīng)濟學動態(tài);2016年01期

6 談超;孫本芝;王冀寧;;P2P網(wǎng)絡借貸平臺中的逾期行為研究[J];財會通訊;2015年05期

7 王會娟;何琳;;借款描述對P2P網(wǎng)絡借貸行為影響的實證研究[J];金融經(jīng)濟學研究;2015年01期

8 李焰;高弋君;李珍妮;才子豪;王冰婷;楊宇軒;;借款人描述性信息對投資人決策的影響——基于P2P網(wǎng)絡借貸平臺的分析[J];經(jīng)濟研究;2014年S1期

9 王會娟;張路;;借款描述對P2P借貸行為的影響研究[J];金融理論與實踐;2014年08期

10 廖理;李夢然;王正位;;聰明的投資者:非完全市場化利率與風險識別——來自P2P網(wǎng)絡借貸的證據(jù)[J];經(jīng)濟研究;2014年07期

相關(guān)碩士學位論文 前4條

1 艾麗淑;國內(nèi)P2P網(wǎng)絡借貸逾期率影響因素研究與社區(qū)網(wǎng)絡構(gòu)建建議[D];西南交通大學;2015年

2 郭雷;借款描述與P2P網(wǎng)絡借貸行為[D];哈爾濱工業(yè)大學;2015年

3 耿嘉;《人民日報》頭版頭條報道“迷霧”研究[D];河北大學;2013年

4 張娜;P2P網(wǎng)絡信貸行為研究[D];西南財經(jīng)大學;2011年



本文編號:1978309

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/touziyanjiulunwen/1978309.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶180e4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com