基于屬性約簡理論的風(fēng)險資產(chǎn)遴選研究
本文選題:屬性約簡 切入點(diǎn):屬性重復(fù)度 出處:《河北師范大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:資本市場是一個收益和風(fēng)險并存的市場。在資本市場中投資者面臨的首要問題是如何有效地規(guī)避風(fēng)險并獲取收益。為了規(guī)避風(fēng)險,投資者,特別是機(jī)構(gòu)投資者往往會選擇多種風(fēng)險資產(chǎn)來構(gòu)造投資組合。目前我國資本市場上的風(fēng)險資產(chǎn)數(shù)以千計,如何將具有投資價值的風(fēng)險資產(chǎn)遴選出來是構(gòu)造投資組合并有效規(guī)避風(fēng)險的核心問題。本文以股票為例,應(yīng)用屬性約簡理論篩選出能夠有效區(qū)分風(fēng)險資產(chǎn)的最小屬性集,并以之為依據(jù),利用聚類分析技術(shù)對風(fēng)險資產(chǎn)進(jìn)行分類,從中選擇表現(xiàn)良好的類別包含的股票構(gòu)造資產(chǎn)池進(jìn)行投資,并對遴選出的股票的投資業(yè)績進(jìn)行檢驗(yàn)。全文共分五部分,主要內(nèi)容如下:引言中介紹了選題背景及意義,梳理了國內(nèi)外有關(guān)投資組合模型及屬性約簡算法的重要文獻(xiàn),提出了研究內(nèi)容、研究思路、重點(diǎn)難點(diǎn)及創(chuàng)新點(diǎn)等。第二部分首先介紹了屬性約簡的相關(guān)理論,在對以往屬性約簡算法進(jìn)行對比分析的基礎(chǔ)上,針對屬性約簡結(jié)果易受到離散化效果的影響,提出了基于屬性重復(fù)度的改進(jìn)的屬性約簡算法,該算法以不同樣本的屬性重復(fù)度為離散化依據(jù),以不改變信息系統(tǒng)的不可分辨關(guān)系為屬性約簡依據(jù),彌補(bǔ)了以往屬性約簡算法在這兩方面的缺陷。第三部分選擇滬深300指數(shù)中2005年前上市且現(xiàn)今仍在滬深300內(nèi)的股票,詳細(xì)介紹了改進(jìn)的屬性約簡算法的實(shí)現(xiàn)過程:首先按行業(yè)分類篩選出表現(xiàn)較好的股票,選擇反映股票收益及公司財務(wù)狀況的諸多指標(biāo),利用改進(jìn)的屬性約簡算法約簡屬性,得到各行業(yè)的最小屬性集,并以此為依據(jù)對各行業(yè)股票進(jìn)行聚類分析,選取表現(xiàn)良好的類別包含的股票樣本構(gòu)建資產(chǎn)池。第四部分分別利用蒙特卡洛隨機(jī)模擬法及滾動均值-CVaR模型給出投資組合權(quán)重,對改進(jìn)的屬性約簡算法遴選出的股票樣本的業(yè)績表現(xiàn)進(jìn)行檢驗(yàn),兩種方法均證明本文提出的改進(jìn)的屬性約簡算法遴選出的股票樣本具有明顯的優(yōu)勢。第五部分總結(jié)了本文的主要工作,并對未來研究做出展望。
[Abstract]:Capital market is a market in which income and risk coexist. In capital market, the most important problem investors face is how to avoid risk and gain income effectively. In particular, institutional investors tend to choose a variety of risky assets to construct their portfolios. At present, there are thousands of risky assets in China's capital market. How to select venture assets with investment value is the core problem of constructing investment portfolio and effectively avoiding risk. This paper takes stock as an example, applies attribute reduction theory to screen out the minimum attribute set which can effectively distinguish venture assets. On the basis of it, the paper classifies the risky assets by cluster analysis technology, selects the stock structure asset pool which has good performance, and tests the investment performance of the selected stocks. The paper is divided into five parts. The main contents are as follows: the introduction introduces the background and significance of the topic selection, combs the important literatures on portfolio model and attribute reduction algorithm at home and abroad, and puts forward the research contents and research ideas. The second part introduces the related theory of attribute reduction. Based on the comparison and analysis of the previous attribute reduction algorithms, the result of attribute reduction is easily influenced by the effect of discretization. An improved attribute reduction algorithm based on attribute repetition is proposed. The algorithm takes attribute repetition of different samples as the basis of discretization and takes the indiscernibility relation of information system as the basis of attribute reduction. In the third part, we choose the stocks listed in the CSI 300 index before 2005 and are still in the CSI 300 index. The implementation process of the improved attribute reduction algorithm is introduced in detail. Firstly, according to the classification of the industry, the better performance of the stock is selected, and many indexes reflecting the stock returns and the financial situation of the company are selected, and the improved attribute reduction algorithm is used to reduce the attributes. The minimum attribute set of each industry is obtained, and based on this, the stocks in each industry are analyzed by cluster analysis. In part 4th, the portfolio weights are given by Monte Carlo stochastic simulation and rolling mean-CVaR model. The performance of the stock sample selected by the improved attribute reduction algorithm is tested. Both methods prove that the improved attribute reduction algorithm proposed in this paper has obvious advantages in selecting stock samples. Part 5th summarizes the main work of this paper and makes a prospect for future research.
【學(xué)位授予單位】:河北師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F832.51
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前9條
1 李成剛;田益祥;羅聰;徐運(yùn)保;;基于NBC的定單流與分析師選股收益率比較[J];系統(tǒng)工程;2011年11期
2 何霞;劉衛(wèi)鋒;;基于模糊層次分析法的選股決策[J];長春大學(xué)學(xué)報;2011年06期
3 馬翔;張繼福;楊海峰;;基于區(qū)分矩陣的啟發(fā)式屬性約簡算法[J];計算機(jī)應(yīng)用;2010年08期
4 王天娥;葉德謙;季春蘭;;粗糙集屬性約簡方法在股票預(yù)測中的應(yīng)用研究[J];計算機(jī)工程與應(yīng)用;2009年30期
5 云煒;段禪倫;;基于粗糙集理論的中醫(yī)方證相關(guān)性算法的研究[J];內(nèi)蒙古大學(xué)學(xué)報(自然科學(xué)版);2007年05期
6 孫士保;秦克云;;基于包含度的決策表屬性約簡算法的研究[J];計算機(jī)工程與應(yīng)用;2006年03期
7 劉俊,毛道維;基于AHP理論的股票選股模型實(shí)證研究[J];電子科技大學(xué)學(xué)報(社科版);2005年03期
8 林斗志;價值投資在我國股市表現(xiàn)的實(shí)證分析[J];財經(jīng)科學(xué);2004年S1期
9 楊明媚,李華林;主成分分析在證券組合投資中的應(yīng)用[J];統(tǒng)計與信息論壇;2004年01期
,本文編號:1618700
本文鏈接:http://sikaile.net/jingjilunwen/touziyanjiulunwen/1618700.html