天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 經(jīng)濟(jì)論文 > 投融資論文 >

基于BP神經(jīng)網(wǎng)絡(luò)和GARCH模型的中國銀行股票價(jià)格預(yù)測實(shí)證分析

發(fā)布時(shí)間:2018-02-13 20:36

  本文關(guān)鍵詞: BP神經(jīng)網(wǎng)絡(luò) GARCH模型 短期預(yù)測 出處:《蘭州大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著中國金融市場與國際接軌,金融衍生品市場初步建成,金融投資工具在多樣化、高杠桿的條件下也帶來了巨大的金融風(fēng)險(xiǎn).復(fù)雜多變的金融市場上對(duì)于金融投資分析工具的要求也就更高,催生出了多種對(duì)于股票價(jià)格預(yù)測的方法.對(duì)于不同的數(shù)據(jù)以及不同的市場環(huán)境需要不同分析方法.神經(jīng)網(wǎng)絡(luò)算法所具有的分布式存儲(chǔ)數(shù)據(jù)以及學(xué)習(xí)反饋機(jī)制的特點(diǎn)使得它在預(yù)測等方面有獨(dú)到的作用.本文中選取中國銀行股票收盤價(jià),采用BP神經(jīng)網(wǎng)絡(luò)(即前饋模型)和GARCH模型的方法對(duì)股票價(jià)格進(jìn)行了預(yù)測,通過對(duì)比分析得出結(jié)論BP神經(jīng)網(wǎng)絡(luò)在隱含層節(jié)點(diǎn)數(shù)為5時(shí)對(duì)于市場數(shù)據(jù)擬合度最好;而GARCH模型在對(duì)股票價(jià)格預(yù)測方面也是有效的,主要是因?yàn)橹袊y行股票數(shù)據(jù)具有尖峰厚尾和平穩(wěn)性特征.最終得出結(jié)論兩種預(yù)測方法都能夠?qū)χ袊y行股票短期價(jià)格進(jìn)行預(yù)測,但BP神經(jīng)網(wǎng)絡(luò)預(yù)測方法優(yōu)于GARCH模型的預(yù)測方法.
[Abstract]:With China's financial market in line with international standards, the financial derivatives market has been initially established, and financial investment instruments are diversifying. Under the condition of high leverage, it also brings great financial risks. The requirements for financial investment analysis tools in complex and changeable financial markets are even higher. Different analysis methods are needed for different data and different market environment. The distributed storage data and learning feedback mechanism of neural network algorithm are special. In this paper, the closing price of Bank of China stock is selected. The method of BP neural network (i.e. feedforward model) and GARCH model are used to predict the stock price. Through comparative analysis, it is concluded that BP neural network has the best fit for market data when the number of hidden layer nodes is 5:00. The GARCH model is also effective in forecasting the stock price, mainly because the bank of China stock data has the characteristics of peak, thick tail and stability. Finally, it is concluded that both of the two forecasting methods can predict the short-term price of Bank of China stock. But BP neural network is better than GARCH model.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP183;F832.51

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 劉柯;;基于主成分分析的BP神經(jīng)網(wǎng)絡(luò)在城市建成區(qū)面積預(yù)測中的應(yīng)用——以北京市為例[J];地理科學(xué)進(jìn)展;2007年06期

2 范高鋒;王偉勝;劉純;;基于人工神經(jīng)網(wǎng)絡(luò)的風(fēng)電功率短期預(yù)測系統(tǒng)[J];電網(wǎng)技術(shù);2008年22期

3 張慶霄;;大盤指數(shù)對(duì)股票價(jià)格的影響及股票價(jià)格預(yù)測研究——基于上市公司的定期報(bào)告[J];科技信息;2010年05期

4 李岳,王繼平,歸江;股價(jià)波動(dòng)及相關(guān)因素的實(shí)證研究[J];數(shù)理統(tǒng)計(jì)與管理;1998年06期

5 顧鋒娟;岑仲迪;;基于GARCH類模型和SV類模型的滬深兩市波動(dòng)性研究[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2011年01期



本文編號(hào):1509044

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/touziyanjiulunwen/1509044.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶37095***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com