Levy過程多維化方法在期權市場應用的比較研究
[Abstract]:Multi-dimensional models of financial assets are becoming more and more important in modern financial markets, such as multi-asset derivatives pricing, portfolio risk management and optimal portfolio selection. As a kind of derivative securities, option is influenced by the change of underlying asset price. Because there is discontinuity in the underlying asset price, the B-S model can not accurately describe the option price, so the Levy process with jump is introduced into the option market. With the rapid development of option innovation and the increasing number of exotic options, the structure of options becomes more and more complex, and the pricing of options becomes more and more difficult. In particular, the underlying asset is multiple assets options, that is, multiple assets options. Therefore, it is necessary to study the multidimensional method of Levy process. In this paper, the complexity of option pricing calculation, other numerical methods and their advantages and disadvantages are discussed, aiming at the defects of B-S model of option pricing and the dimensionality disaster of multi-asset option or high-dimensional asset option pricing. The Monte Carlo simulation method is especially studied. A basket of options and rainbow options are typical representatives of multi-asset exotic options. In this paper, we use the multidimensional Variance Gamma model in the multi-dimensional Levy process to price the second-best rainbow options in basket options and rainbow options. The multi-dimensional Variance Gamma model is established by using a common r (Gamma) dependent process with time-varying geometric Brownian motion using the random clock variation technique. Compared with the multi-dimensional B-S model, the result of the multidimensional Variance Gamma model is better than that of the multi-dimensional B-S model, which is more in line with the reality of the option market.
【學位授予單位】:天津科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:F224;F830.9
【相似文獻】
相關期刊論文 前10條
1 呂學斌;萬建平;;分期付款期權在基于教育基金保險的期權中的應用[J];經濟數學;2007年04期
2 王磊;金治明;;波動率非常數時一類博弈期權的定價[J];湖南師范大學自然科學學報;2009年01期
3 楊維強;彭實戈;;期權穩(wěn)健定價模型及實證[J];山東大學學報(理學版);2006年02期
4 韓書成;期權及其在高新技術企業(yè)中的應用研究[J];科技管理研究;2003年02期
5 莊家;;項目投資中放棄期權與看漲期權的組合研究[J];建筑經濟;2006年S2期
6 向仕容;羅華偉;;期權投資策略在期權估價中的運用[J];財會通訊;2010年32期
7 陳榮達;肖德云;;外匯期權敏感性分析[J];武漢理工大學學報;2006年02期
8 張梅琳;基于競爭格局的期權執(zhí)行博弈[J];上海大學學報(自然科學版);2004年03期
9 謝一青;;期權的時間效力與盈利目標的設定形式[J];世界經濟情況;2006年12期
10 顧云華;買入期權交易中的博弈與定價[J];商場現(xiàn)代化;2005年22期
相關會議論文 前3條
1 王一多;張蜀林;;我國股票市場期權式交易策略研究[A];“兩型社會”建設與管理創(chuàng)新——第十五屆中國管理科學學術年會論文集(上)[C];2013年
2 李東;肖越;;場外期權在企業(yè)風險管理中的運用[A];第八屆中國期貨分析師論壇?痆C];2014年
3 張鴻雁;肖q,
本文編號:2224688
本文鏈接:http://sikaile.net/jingjilunwen/qihuoqq/2224688.html