Levy過(guò)程多維化方法在期權(quán)市場(chǎng)應(yīng)用的比較研究
[Abstract]:Multi-dimensional models of financial assets are becoming more and more important in modern financial markets, such as multi-asset derivatives pricing, portfolio risk management and optimal portfolio selection. As a kind of derivative securities, option is influenced by the change of underlying asset price. Because there is discontinuity in the underlying asset price, the B-S model can not accurately describe the option price, so the Levy process with jump is introduced into the option market. With the rapid development of option innovation and the increasing number of exotic options, the structure of options becomes more and more complex, and the pricing of options becomes more and more difficult. In particular, the underlying asset is multiple assets options, that is, multiple assets options. Therefore, it is necessary to study the multidimensional method of Levy process. In this paper, the complexity of option pricing calculation, other numerical methods and their advantages and disadvantages are discussed, aiming at the defects of B-S model of option pricing and the dimensionality disaster of multi-asset option or high-dimensional asset option pricing. The Monte Carlo simulation method is especially studied. A basket of options and rainbow options are typical representatives of multi-asset exotic options. In this paper, we use the multidimensional Variance Gamma model in the multi-dimensional Levy process to price the second-best rainbow options in basket options and rainbow options. The multi-dimensional Variance Gamma model is established by using a common r (Gamma) dependent process with time-varying geometric Brownian motion using the random clock variation technique. Compared with the multi-dimensional B-S model, the result of the multidimensional Variance Gamma model is better than that of the multi-dimensional B-S model, which is more in line with the reality of the option market.
【學(xué)位授予單位】:天津科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:F224;F830.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂學(xué)斌;萬(wàn)建平;;分期付款期權(quán)在基于教育基金保險(xiǎn)的期權(quán)中的應(yīng)用[J];經(jīng)濟(jì)數(shù)學(xué);2007年04期
2 王磊;金治明;;波動(dòng)率非常數(shù)時(shí)一類博弈期權(quán)的定價(jià)[J];湖南師范大學(xué)自然科學(xué)學(xué)報(bào);2009年01期
3 楊維強(qiáng);彭實(shí)戈;;期權(quán)穩(wěn)健定價(jià)模型及實(shí)證[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2006年02期
4 韓書成;期權(quán)及其在高新技術(shù)企業(yè)中的應(yīng)用研究[J];科技管理研究;2003年02期
5 莊家;;項(xiàng)目投資中放棄期權(quán)與看漲期權(quán)的組合研究[J];建筑經(jīng)濟(jì);2006年S2期
6 向仕容;羅華偉;;期權(quán)投資策略在期權(quán)估價(jià)中的運(yùn)用[J];財(cái)會(huì)通訊;2010年32期
7 陳榮達(dá);肖德云;;外匯期權(quán)敏感性分析[J];武漢理工大學(xué)學(xué)報(bào);2006年02期
8 張梅琳;基于競(jìng)爭(zhēng)格局的期權(quán)執(zhí)行博弈[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年03期
9 謝一青;;期權(quán)的時(shí)間效力與盈利目標(biāo)的設(shè)定形式[J];世界經(jīng)濟(jì)情況;2006年12期
10 顧云華;買入期權(quán)交易中的博弈與定價(jià)[J];商場(chǎng)現(xiàn)代化;2005年22期
相關(guān)會(huì)議論文 前3條
1 王一多;張蜀林;;我國(guó)股票市場(chǎng)期權(quán)式交易策略研究[A];“兩型社會(huì)”建設(shè)與管理創(chuàng)新——第十五屆中國(guó)管理科學(xué)學(xué)術(shù)年會(huì)論文集(上)[C];2013年
2 李東;肖越;;場(chǎng)外期權(quán)在企業(yè)風(fēng)險(xiǎn)管理中的運(yùn)用[A];第八屆中國(guó)期貨分析師論壇?痆C];2014年
3 張鴻雁;肖q,
本文編號(hào):2224688
本文鏈接:http://sikaile.net/jingjilunwen/qihuoqq/2224688.html