天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

高維二次度量回歸模型研究

發(fā)布時(shí)間:2018-11-19 12:27
【摘要】:在大數(shù)據(jù)時(shí)代,高維數(shù)據(jù)呈現(xiàn)在基因組和健康科學(xué)、經(jīng)濟(jì)與金融、天文學(xué)與物理學(xué)、信號(hào)處理與成像等學(xué)科領(lǐng)域.其中一個(gè)共同特征是預(yù)測(cè)變量具有稀疏性.選擇最相關(guān)的預(yù)測(cè)變量是高維數(shù)據(jù)回歸分析的一個(gè)主要研究?jī)?nèi)容,具有十分重要的應(yīng)用價(jià)值.為此,針對(duì)線性回歸假設(shè)的許多統(tǒng)計(jì)方法被提出和廣泛研究.然而,在壓縮感知、信號(hào)處理與亞波長(zhǎng)光學(xué)成像等實(shí)際問(wèn)題中,響應(yīng)變量和回歸參數(shù)是二次關(guān)系.所以,本文引入二次度量回歸(QMR)模型,研究了其高維情形下的變量選擇問(wèn)題,并建立了相應(yīng)的優(yōu)化理論與算法.第二章引入一致正則性概念,給出相應(yīng)的判定條件,并且用于高維QMR模型的可辨識(shí)性研究.第三章針對(duì)高維QMR模型的lq(0 q 1)正則最小二乘問(wèn)題,給出了相應(yīng)估計(jì)的中偏差和弱Oracle性質(zhì),得到了解的存在性及其不動(dòng)點(diǎn)理論.在此基礎(chǔ)上,構(gòu)造了不動(dòng)點(diǎn)迭代算法,建立了其收斂性結(jié)果.最后,通過(guò)數(shù)值模擬表明該方法的有效性.第四章針對(duì)QMR模型的l0約束最小二乘問(wèn)題,給出了解的存在性及不動(dòng)點(diǎn)理論,進(jìn)而構(gòu)造了稀疏投影梯度算法,并得到該算法的收斂性.最后,通過(guò)數(shù)值模擬表明l0約束最小二乘方法的有效性.第五章針對(duì)高維QMR模型的特殊情形—線性模型,研究了加權(quán)l(xiāng)1正則分位數(shù)回歸問(wèn)題.使用交替方向乘子法提出了一種快速、有效算法,得到了算法的收斂性.利用該算法和局部線性近似技巧,還構(gòu)造了一類(lèi)非凸懲罰的分位數(shù)回歸估計(jì)的計(jì)算方法.最后,數(shù)值實(shí)驗(yàn)表明該算法的有效性.
[Abstract]:In big data's time, high dimensional data were presented in the fields of genome and health science, economics and finance, astronomy and physics, signal processing and imaging. One of the common characteristics is the sparsity of predictive variables. Choosing the most relevant predictive variables is one of the main research contents of high dimensional data regression analysis, which has very important application value. Therefore, many statistical methods for linear regression hypothesis have been proposed and widely studied. However, in practical problems such as compression sensing, signal processing and subwavelength optical imaging, the response variables and regression parameters are quadratic. Therefore, in this paper, the quadratic metric regression (QMR) model is introduced to study the variable selection problem in the case of high dimension, and the corresponding optimization theory and algorithm are established. In chapter 2, the concept of uniform regularity is introduced, and the corresponding criteria are given, which are used to study the identifiability of high-dimensional QMR model. In chapter 3, for the lq (0Q 1) regular least squares problem of high dimensional QMR model, the intermediate deviation and weak Oracle properties of the corresponding estimates are given, and the existence of the solution and its fixed point theory are obtained. On this basis, the fixed point iterative algorithm is constructed and its convergence results are established. Finally, numerical simulation shows the effectiveness of the method. In chapter 4, the existence of solution and the fixed point theory are given for the l0-constrained least square problem of QMR model, and then the sparse projection gradient algorithm is constructed, and the convergence of the algorithm is obtained. Finally, numerical simulation shows the validity of the l 0 constrained least squares method. In chapter 5, the weighted L 1 regular quantile regression problem is studied for the special case of the high dimensional QMR model, the linear model. A fast and effective algorithm is proposed by using alternating direction multiplier method, and the convergence of the algorithm is obtained. By using this algorithm and the local linear approximation technique, a new method of quantile regression estimation for nonconvex penalty is also constructed. Finally, numerical experiments show the effectiveness of the algorithm.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O212.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前3條

1 許志強(qiáng);;壓縮感知[J];中國(guó)科學(xué):數(shù)學(xué);2012年09期

2 文再文;印臥濤;劉歆;張寅;;壓縮感知和稀疏優(yōu)化簡(jiǎn)介[J];運(yùn)籌學(xué)學(xué)報(bào);2012年03期

3 常象宇;徐宗本;張海;王建軍;梁勇;;穩(wěn)健L_q(0<q<1)正則化理論:解的漸近分布與變量選擇一致性[J];中國(guó)科學(xué):數(shù)學(xué);2010年10期

,

本文編號(hào):2342303

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/2342303.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5fa77***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲乱码av中文一区二区三区| 一区二区三区人妻在线| 国产成人亚洲精品青草天美| 国产一区二区三区色噜噜| 成年女人午夜在线视频| 国产在线不卡中文字幕| 精品国产日韩一区三区| 大香蕉大香蕉手机在线视频| 成年人黄片大全在线观看| 国产传媒中文字幕东京热| 黄色日韩欧美在线观看| 日本大学生精油按摩在线观看| 欧美日韩最近中国黄片| 国产视频福利一区二区| 大香蕉久久精品一区二区字幕| 欧美激情一区=区三区| 精品国模一区二区三区欧美| 深夜视频成人在线观看| 成年人免费看国产视频| 精品熟女少妇av免费久久野外| 熟女一区二区三区国产| 欧美激情视频一区二区三区| 办公室丝袜高跟秘书国产| 欧美日韩免费黄片观看| 亚洲一区二区三区一区| 欧美成人免费夜夜黄啪啪| 日本亚洲欧美男人的天堂| 黄色国产自拍在线观看| 久久综合九色综合欧美| 91香蕉视频精品在线看| 久久精品视频就在久久| 亚洲成人精品免费在线观看| 国产农村妇女成人精品| 久一视频这里只有精品| 亚洲夫妻性生活免费视频| 国产精品人妻熟女毛片av久| 日韩欧美三级中文字幕| 亚洲国产色婷婷久久精品| 人妻亚洲一区二区三区| 黄片免费观看一区二区| 亚洲av熟女一区二区三区蜜桃|