基于AdaBoost回歸樹的多目標(biāo)預(yù)測(cè)算法的研究
[Abstract]:In big data's time, how to make good use of the potential information value of data has become an important factor whether the business giant can realize the rapid economic development. Accurate target prediction is of inestimable significance to the development of national economy. In commercial, economic and other fields, predictive analysis is increasingly dependent on data mining modeling, statistics, and analysis. With the development of Internet finance, target prediction has become a practical topic. As a new field of data mining, multi-objective regression prediction is closely related to multi-label classification learning. At present, classified learning is more mature and more extensive. The latest research results of multi-label classification learning have inspired us to apply it successfully in the field of multi-objective regression. In fact, multi-objective prediction has been used in many fields, such as wind noise prediction of vehicle components, stock forecasting and ecological models. The prediction problem usually involves the same input variables and multiple target variables. When the target variable is binary, the prediction task is called multi-label classification, and when the target variable is real, the prediction task is called multi-objective prediction. In this paper, we propose two new multiobjective regression methods: multiobjective stacking (Multi-Target Stacking) and integrated regression chain (Ensemble of Regressor Chains). The inspiration comes from two popular multi-label classification methods. In the first stage of MTS and ERC training, the single objective prediction (Single-Target Regression) model based on the regression tree AdaBoost algorithm (ART) will be used as the benchmark method. In the second stage of training, both MTS and ERC extend the input variable space of the second stage by adding the target prediction value of the first stage as input variables, so as to establish a multi-objective prediction model. The two methods take advantage of the relationship between the target variables, except that ERC considers the order of the target in addition to the dependency of the target. In addition, we summarize the shortcomings of MTS and ERC, modify the algorithm and propose the corresponding improved versions of MTS Corrected (MTSC) and ERC Corrected (ERCC). Another important contribution of this paper is to provide data on 12 different realms of the real world. The experimental results show that the modified regression chain ERCC algorithm performs best in the multi-objective prediction problem. Its performance is obviously superior to that of single objective prediction ART and the most advanced multiobjective random forest (MORF), and also better than the other methods proposed in this paper, MTS,MTSC,ERC.. In addition, the results also show that the modified versions of MTSC and ERCC significantly improve the performance of MTS and ERC.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬勇,丁曉青;Real-Time Multi-View Face Detection and Pose Estimation Based on Cost-Sensitive AdaBoost[J];Tsinghua Science and Technology;2005年02期
2 林志陽;康耀紅;雷景生;;基于Adaboost的車標(biāo)定位方法[J];計(jì)算機(jī)工程;2008年11期
3 張磊;;基于AdaBoost的側(cè)面人臉、人耳檢測(cè)[J];科學(xué)大眾;2008年08期
4 付忠良;;關(guān)于AdaBoost有效性的分析[J];計(jì)算機(jī)研究與發(fā)展;2008年10期
5 張崗?fù)?楊全;;兩種Adaboost方法在人臉檢測(cè)中的比較研究[J];微計(jì)算機(jī)信息;2009年24期
6 嚴(yán)超;王元慶;李久雪;張兆揚(yáng);;AdaBoost分類問題的理論推導(dǎo)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
7 李印;;基于AdaBoost的行人檢測(cè)研究與實(shí)現(xiàn)[J];數(shù)字技術(shù)與應(yīng)用;2012年03期
8 蘇加強(qiáng);丁柳云;;基于R的監(jiān)督式AdaBoost異常值檢測(cè)應(yīng)用[J];淮海工學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年01期
9 張志勛;張磊;楊凡;;一種改進(jìn)的Adaboost人臉檢測(cè)方法[J];自動(dòng)化與儀器儀表;2013年06期
10 王海川,張立明;一種新的Adaboost快速訓(xùn)練算法[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2004年01期
相關(guān)會(huì)議論文 前10條
1 Wen Feng;;A Novel Lips Detection Method Combined Adaboost Algorithm and Camshift Algorithm[A];2012年計(jì)算機(jī)應(yīng)用與系統(tǒng)建模國(guó)際會(huì)議論文集[C];2012年
2 張超;苗振江;;基于AdaBoost的面部信息感知[A];第十三屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2007)論文集[C];2007年
3 郭翌;汪源源;;基于Adaboost算法的頸動(dòng)脈粥樣硬化判別方法[A];中國(guó)儀器儀表學(xué)會(huì)第十一屆青年學(xué)術(shù)會(huì)議論文集[C];2009年
4 張紅梅;高海華;王行愚;;抑制樣本噪聲的AdaBoost算法及其在入侵檢測(cè)中的應(yīng)用[A];2007年中國(guó)智能自動(dòng)化會(huì)議論文集[C];2007年
5 陸文聰;鈕冰;金雨歡;;基于AdaBoost算法的亞細(xì)胞位置預(yù)測(cè)[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)化學(xué)信息學(xué)與化學(xué)計(jì)量學(xué)分會(huì)場(chǎng)論文集[C];2008年
6 陳宏偉;劉建偉;費(fèi)向東;;一種半監(jiān)督環(huán)境下的Adaboost算法[A];2008'中國(guó)信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(二)[C];2008年
7 唐曉丹;苗振江;;基于AdaBoost和粒子濾波的目標(biāo)跟蹤[A];第十四屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2008年
8 張彬;金連文;;基于AdaBoost的手寫體漢字相似字符識(shí)別[A];第二十六屆中國(guó)控制會(huì)議論文集[C];2007年
9 ;Using Skin Color and HAD-AdaBoost Algorithm for Face Detection in Color Images[A];Information Technology and Computer Science—Proceedings of 2012 National Conference on Information Technology and Computer Science[C];2012年
10 肖磊;李麗;肖佳文;;基于AdaBoost-SVM的上市公司信用風(fēng)險(xiǎn)評(píng)估[A];2012管理創(chuàng)新、智能科技與經(jīng)濟(jì)發(fā)展研討會(huì)論文集[C];2012年
相關(guān)博士學(xué)位論文 前5條
1 佟旭;基于復(fù)雜網(wǎng)絡(luò)理論的糖尿病腎病辨證建模研究[D];北京中醫(yī)藥大學(xué);2016年
2 劉沖;模擬電路故障診斷AdaBoost集成學(xué)習(xí)方法研究[D];大連海事大學(xué);2011年
3 張?zhí)珜?人眼注視點(diǎn)估計(jì)方法的研究[D];南開大學(xué);2013年
4 趙培英;基于智能計(jì)算的膜蛋白結(jié)構(gòu)與相互作用預(yù)測(cè)研究[D];東華大學(xué);2010年
5 閔歡;稀疏采樣輸出變量數(shù)據(jù)補(bǔ)缺的軟儀表校正策略與方法[D];中國(guó)石油大學(xué)(北京);2016年
相關(guān)碩士學(xué)位論文 前10條
1 皮麗琴;基于AdaBoost-GASVM算法和LDA主題模型的短文本分類研究[D];華南理工大學(xué);2015年
2 孫斌;一種基于Adaboost的實(shí)時(shí)行人檢測(cè)算法[D];華南理工大學(xué);2015年
3 蔡澤彬;基于視頻分析的行人檢測(cè)及統(tǒng)計(jì)方法研究[D];華南理工大學(xué);2015年
4 游晴;Adaboost人臉檢測(cè)算法研究及其在硬件平臺(tái)上的實(shí)現(xiàn)[D];昆明理工大學(xué);2015年
5 宋雨;基于視覺圖片的腦—機(jī)接口控制研究[D];天津理工大學(xué);2015年
6 林欣;基于改進(jìn)膚色模型的AdaBoost人臉檢測(cè)算法研究[D];陜西科技大學(xué);2015年
7 袁浩杰;Adaboost算法的并行化及其在目標(biāo)分類中的應(yīng)用[D];華南理工大學(xué);2015年
8 張恒;基于近紅外圖像的疲勞駕駛檢測(cè)研究與系統(tǒng)實(shí)現(xiàn)[D];長(zhǎng)安大學(xué);2015年
9 朱非易;基于不平衡學(xué)習(xí)的蛋白質(zhì)—維生素綁定位點(diǎn)預(yù)測(cè)研究[D];南京理工大學(xué);2015年
10 張?jiān)?一種基于AdaBoost的組合分類算法研究[D];四川師范大學(xué);2015年
,本文編號(hào):2280596
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/2280596.html