PMI指數(shù)的復(fù)制:決定變量、路徑分析和指數(shù)預(yù)測(cè)
本文選題:PMI指數(shù) + 定量數(shù)據(jù); 參考:《浙江工商大學(xué)》2017年碩士論文
【摘要】:國(guó)際金融危機(jī)過(guò)后,雖然全球經(jīng)濟(jì)逐步回升,但是危機(jī)深層次的影響依然存在,再加上政治等非經(jīng)濟(jì)因素的影響逐步加深,使得我國(guó)的發(fā)展面臨了許多的不確定性和挑戰(zhàn)性。為了科學(xué)、及時(shí)的監(jiān)測(cè)經(jīng)濟(jì)發(fā)展?fàn)顟B(tài),我國(guó)構(gòu)建了采購(gòu)經(jīng)理——PMI指數(shù)體系,采用非定量的問(wèn)卷調(diào)查數(shù)據(jù),于每月月初計(jì)算并對(duì)外公布上一個(gè)月的PMI指數(shù)數(shù)值,來(lái)綜合的反映宏觀經(jīng)濟(jì)發(fā)展態(tài)勢(shì)。在此背景下,本文基于前人的研究基礎(chǔ),采用PMI(-1)(滯后一期PMI指數(shù)值)、超額準(zhǔn)備金率、法定準(zhǔn)備金率、進(jìn)口金額、出口金額、平均匯率、流通于銀行體系以外的現(xiàn)鈔M0等36個(gè)客觀定量數(shù)據(jù)作為PMI指數(shù)體系的可能影響變量,同時(shí),采用Li and Racine(2004)提出了混合數(shù)據(jù)下變量剔除的非參數(shù)方法,來(lái)確定與PMI指數(shù)存在相關(guān)關(guān)系的變量,復(fù)制出PMI指數(shù)的決定變量,并進(jìn)一步,構(gòu)建半?yún)?shù)時(shí)變系數(shù)的完全模型、路徑模型,對(duì)所篩選出的變量進(jìn)行了聯(lián)合效應(yīng)、個(gè)體效應(yīng)的分析,最后,將模型推廣為預(yù)測(cè)模型,對(duì)PMI指數(shù)進(jìn)行了預(yù)測(cè),從而將PMI指數(shù)由描述性統(tǒng)計(jì)指數(shù)推向推斷性統(tǒng)計(jì)指數(shù),填補(bǔ)了已有文獻(xiàn)在這方面的空白。具體所做工作和得到的結(jié)論如下:首先,通過(guò)混合數(shù)據(jù)下變量剔除的非參方法進(jìn)行變量的相關(guān)性和線性性的選擇,模擬出PMI指數(shù)的決定變量,發(fā)現(xiàn)與PMI指數(shù)存在線性關(guān)系的變量為:PMI(-1)、出口金額(CE)、工業(yè)增加值(GZ);存在非線性關(guān)系的變量為:股票成交金額(GE)、公共財(cái)政收入(GR)、公共財(cái)政收支差額(GGCE)、稅收收入(SR)、平均匯率(PL)、活期存款利率(HL)。其次,通過(guò)半?yún)?shù)時(shí)變系數(shù)的完全模型和路徑模型的實(shí)證分析,發(fā)現(xiàn)加入6個(gè)非線性變量后,它們的聯(lián)合作用會(huì)使得模型對(duì)于PMI指數(shù)有更加明顯的解釋能力。同時(shí),發(fā)現(xiàn)各個(gè)非線性變量對(duì)PMI指數(shù)的影響各不相同,對(duì)PMI指數(shù)的擬合存在正向影響的非線性變量為:GE、GR、GGCE,沒(méi)有存在負(fù)向影響的變量,其中SR、PL、HL對(duì)PMI指數(shù)擬合結(jié)果的正負(fù)向影響不明顯。最后,本文構(gòu)建了變異系數(shù),通過(guò)比較,發(fā)現(xiàn)各個(gè)非線性變量對(duì)PMI指數(shù)波動(dòng)影響大小依次是:GGCE、GE、HL、PL、GR、SR(剔除后)。最后,通過(guò)半?yún)?shù)時(shí)變系數(shù)的預(yù)測(cè)模型的實(shí)證分析,不僅說(shuō)明了非參變量選擇所篩選出的變量在未來(lái)經(jīng)濟(jì)運(yùn)行中依然能夠解釋PMI指數(shù),而且,提供了一個(gè)整體預(yù)測(cè)效果較好的預(yù)測(cè)模型,為企業(yè)、金融機(jī)構(gòu)和政府等提供了判斷經(jīng)濟(jì)形勢(shì)、制定發(fā)展計(jì)劃的有力依據(jù)。
[Abstract]:After the international financial crisis, although the global economy is rising gradually, the deep influence of the crisis still exists, and the influence of non-economic factors such as politics is deepening gradually, which makes the development of our country face a lot of uncertainty and challenge. In order to monitor the state of economic development in a scientific and timely manner, China has constructed a purchasing manager PMI index system, which uses non-quantitative questionnaire data to calculate and publish the PMI index value of the previous month at the beginning of each month. To reflect the macroeconomic development situation. In this context, based on the previous research basis, this paper adopts PMI-1N (PMI-1U), the excess reserve ratio, the legal reserve ratio, the import amount, the export amount, the average exchange rate. 36 objective quantitative data, such as cash M0, which are circulating outside the banking system, are regarded as possible influential variables in the PMI-index system. At the same time, a non-parametric method for the elimination of variables under mixed data is proposed by using Li and Racine 2004). To determine the variables related to PMI index, duplicate the determinant variables of PMI index, and further, construct the complete model of semi-parametric time-varying coefficient, path model, and carry on the joint effect to the selected variables. Finally, the model is extended to predict the PMI index, thus the PMI index is pushed from descriptive statistical index to inferential statistical index, which fills the gap in the previous literature. The specific work and conclusions are as follows: firstly, the determinant variables of PMI index are simulated by selecting the correlation and linearity of variables by the non-parametric method of variable elimination under mixed data. It was found that the variables with linear relationship with PMI index were: PMI-1 / 1, export / export value / value added / industrial / industrial value added / GZN, and the nonlinear relationships were as follows: stock transaction value / stock turnover, public finance revenue / expenditure / GGCEC / GGCEA, tax revenue / tax / tax revenue / expenditure balance The exchange rate is high, and the demand deposit rate is high. Secondly, through the empirical analysis of complete model and path model of semi-parametric time-varying coefficient, it is found that the combined action of six nonlinear variables will make the model have a more obvious ability to explain PMI index. At the same time, it is found that the influence of each nonlinear variable on PMI index is different. The nonlinear variable with positive influence on PMI index fitting is the one with no negative effect. The positive and negative effects of SRL PL HL on PMI index fitting results are not obvious. Finally, the coefficient of variation is constructed, and by comparison, it is found that the influence of each nonlinear variable on the fluctuation of PMI index is in turn: 1. Finally, through the empirical analysis of the semi-parametric time-varying coefficient prediction model, it not only shows that the variables selected by the non-parametric variables can still explain the PMI index in the future economic operation, but also, A better forecasting model is provided, which provides a powerful basis for enterprises, financial institutions and governments to judge the economic situation and formulate development plans.
【學(xué)位授予單位】:浙江工商大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:F224;F124
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊興武;沈頌東;;中國(guó)采購(gòu)經(jīng)理指數(shù)(PMI)對(duì)GDP影響的傳導(dǎo)路徑分析[J];統(tǒng)計(jì)與決策;2016年05期
2 梁艷艷;羅林;顧翠伶;;PMI,GDP和CPI的沖擊傳導(dǎo)效應(yīng)研究[J];周口師范學(xué)院學(xué)報(bào);2016年02期
3 盛煜;楊桂元;;制造業(yè)PMI和股票市場(chǎng)的相關(guān)性研究[J];齊齊哈爾大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);2016年02期
4 林俊凱;;中國(guó)PMI與GDP季節(jié)性協(xié)整分析[J];商業(yè)經(jīng)濟(jì)研究;2016年02期
5 張棟華;;中國(guó)PMI指數(shù)作用和質(zhì)量的測(cè)度[J];經(jīng)濟(jì)統(tǒng)計(jì)學(xué)(季刊);2014年01期
6 宋科進(jìn);;我國(guó)制造業(yè)PMI購(gòu)進(jìn)價(jià)格分類(lèi)指數(shù)與PPI的關(guān)系研究[J];價(jià)格月刊;2014年09期
7 張利斌;謝天琪;;我國(guó)制造業(yè)PMI指數(shù)與滬深兩市股票價(jià)格綜合指數(shù)的關(guān)系[J];中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年02期
8 劉雪燕;;PMI指數(shù)季節(jié)調(diào)整研究[J];中國(guó)物價(jià);2013年05期
9 方力;;PMI指數(shù)是否是可靠的經(jīng)濟(jì)景氣指標(biāo)[J];華北金融;2012年07期
10 唐琴琴;;PMI指數(shù)的應(yīng)用[J];商;2012年07期
,本文編號(hào):2008190
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/2008190.html