江蘇省如皋地區(qū)110kV輸電線路雷擊跳閘率分析及防雷措施研究
本文選題:如皋地區(qū) + 防雷性能。 參考:《華北電力大學(xué)(北京)》2016年碩士論文
【摘要】:作為生產(chǎn)、輸送、分配與消耗電能的系統(tǒng),電力系統(tǒng)在國民經(jīng)濟(jì)與生產(chǎn)中起著極為重要的作用。輸電網(wǎng)和配電網(wǎng)是電力系統(tǒng)中的重要組成部分,是連接發(fā)電廠和用戶的紐帶。雷擊作為造成配電網(wǎng)供電可靠性下降的一個重要因素日趨得到重視。110kV輸電線路在國家電能輸送分配方面具有重要地位,保障輸電線路的安全穩(wěn)定運(yùn)行、避免輸電線路故障,是110kV輸電線路運(yùn)行維護(hù)單位的一個重要工作任務(wù),也是值得研究的科學(xué)問題。江蘇省是我國經(jīng)濟(jì)大省,其人口、建筑物和工業(yè)較為集中,用電量大,電網(wǎng)密集;同時由于江蘇地處溫帶,雷電活動頻仍,極易發(fā)生雷擊事故。為深入討論分析110kV桿塔的防雷性能,本文對江蘇如皋地區(qū)110kV輸電線路的數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析?紤]到現(xiàn)有的規(guī)程中采用的計(jì)算方法較為粗略,不能準(zhǔn)確描述高頻率雷電波下桿塔中的電磁暫態(tài)過程,本文對桿塔高頻暫態(tài)建模進(jìn)行了研究,主要做了如下工作:首先對背景資料及基礎(chǔ)數(shù)據(jù)進(jìn)行了整理。分析整理了江蘇省地區(qū)地貌及雷電參數(shù)等數(shù)據(jù)、考慮到江蘇地區(qū)雷暴日較多的特點(diǎn),收集整理江蘇地區(qū)110kV典型塔型參數(shù)及其接地情況、對桿塔高度數(shù)據(jù)、塔型布置結(jié)構(gòu)、雷電典型參數(shù)、土壤電阻率等數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析;然后首先研究了目前國內(nèi)外主要的桿塔建模方法,并對這些方法的優(yōu)缺點(diǎn)進(jìn)行了比較分析。根據(jù)江蘇如皋地區(qū)110kV輸電線路典型桿塔數(shù)據(jù),根據(jù)日本學(xué)者Hara提出的多波阻抗模型,建立了合理的雷電沖擊下110kV典型桿塔多波阻抗模型;利用ATP-EMTP軟件對桿塔的多波阻抗參數(shù)進(jìn)行計(jì)算;研究了雷電過電壓機(jī)理、雷電放電模型和雷擊跳閘率計(jì)算方法;利用實(shí)際桿塔參數(shù)對雷擊跳閘率進(jìn)行了計(jì)算,并對影響雷擊跳閘率的因素進(jìn)行了分析。根據(jù)江蘇如皋地區(qū)110kV輸配電線路的防雷現(xiàn)狀,發(fā)現(xiàn)輸配電網(wǎng)在防雷措施和防雷設(shè)備上存在的缺陷和不足,提出改進(jìn)措施。研究表明,接地電阻、呼高、檔距及絕緣子串等參數(shù)均對雷擊跳閘率產(chǎn)生不同程度的影響,其中接地電阻與呼高的影響最為明顯。同時,對江蘇如皋地區(qū)110kV線路防雷性能進(jìn)行了評估,通過提高絕緣子串U50%、裝設(shè)避雷器、減小接地電阻等方法,提高供電線路的耐雷水平。本文的研究內(nèi)容對研究分析110kV的防雷性能有著指導(dǎo)作用,并能夠?qū)⒀芯砍晒麘?yīng)用到未來對該地區(qū)110kV線路改造的方案指導(dǎo)上,具有較為明顯的實(shí)用價值和較高的工程意義。
[Abstract]:As a system of production, transmission, distribution and consumption of electric energy, power system plays an extremely important role in national economy and production. Transmission network and distribution network are important components of power system and the link between power plant and users. Lightning stroke, as an important factor that causes the decrease of power supply reliability of distribution network, has been paid more and more attention to. 110kV transmission line plays an important role in the distribution of national power transmission, which ensures the safe and stable operation of transmission line and avoids the fault of transmission line. It is an important task of 110kV transmission line operation and maintenance unit, and it is also a scientific problem worth studying. Jiangsu Province is a large economic province in China, its population, buildings and industries are concentrated, electricity consumption is large, and power grid is dense. At the same time, because Jiangsu is located in the temperate zone and lightning activity is frequent, lightning accidents are easy to occur. In order to discuss and analyze the lightning protection performance of 110kV tower, the data of 110kV transmission line in Rugao area of Jiangsu province are analyzed statistically in this paper. Considering that the calculation methods used in the existing regulations are rather rough and can not accurately describe the electromagnetic transient process in the tower under high frequency lightning waves, the high frequency transient modeling of the tower is studied in this paper. The main work is as follows: firstly, the background data and basic data are sorted out. The data of geomorphology and lightning parameters in Jiangsu Province are analyzed and arranged. Considering the characteristics of more thunderstorm days in Jiangsu region, the typical tower parameters and grounding conditions of 110kV in Jiangsu are collected and sorted, and the tower height data and tower layout structure are analyzed. The typical lightning parameters, soil resistivity and other data are analyzed statistically. Then, the main methods of tower modeling at home and abroad are studied, and the advantages and disadvantages of these methods are compared and analyzed. Based on the typical tower data of 110kV transmission line in Rugao area, Jiangsu Province, and according to the multi-wave impedance model proposed by Japanese scholar Hara, a reasonable multi-wave impedance model of 110kV tower under lightning shock is established. The ATP-EMTP software is used to calculate the multi-wave impedance parameters of the tower, the mechanism of lightning overvoltage, the lightning discharge model and the calculation method of lightning tripping rate are studied, and the lightning tripping rate is calculated by using the actual tower parameters. The factors influencing the lightning tripping rate are analyzed. According to the lightning protection status of 110kV transmission and distribution line in Rugao area, Jiangsu Province, the defects and shortcomings of lightning protection measures and lightning protection equipment in transmission and distribution network are found, and the improvement measures are put forward. The results show that the parameters such as grounding resistance, call height, step distance and insulator string have different effects on lightning tripping rate, among which the influence of grounding resistance and call height is the most obvious. At the same time, the lightning protection performance of 110kV line in Rugao area of Jiangsu Province is evaluated. By improving U50 insulator string, installing lightning arrester and reducing grounding resistance, the lightning resistance level of power supply line is improved. The research content of this paper has the guiding function to study and analyze the lightning protection performance of 110kV, and can apply the research results to the plan guidance of 110kV line reconstruction in the future, which has obvious practical value and high engineering significance.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TM863
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金祖山;胡文堂;龔堅(jiān)剛;吳明祥;曾嶸;;浙江電網(wǎng)高壓輸電線路雷擊跳閘率的評估[J];浙江電力;2010年05期
2 張勇剛;;110kV線路雷擊跳閘率的降低方案[J];硅谷;2012年01期
3 王洪澤;;論山區(qū)線路雷擊跳閘率的計(jì)算[J];華東電力;1982年08期
4 劉煥柳,王定華;輸電線雷擊跳閘率的蒙特卡羅模擬及其諸因素的影響[J];高電壓技術(shù);1983年01期
5 孫萬忠;;降低線路雷擊跳閘率的技術(shù)措施的分析[J];西南電力技術(shù);1984年02期
6 馮大千,李如虎;解決共桿線路雷擊跳閘率高的幾點(diǎn)建議[J];華東電力;1986年11期
7 孫萬忠;;微機(jī)計(jì)算線路雷擊跳閘率方法探討[J];西南電力;1987年Z1期
8 劉樹藩,古萍,顏懷梁;采取區(qū)間組合法計(jì)算輸電線路的雷擊跳閘率[J];高電壓技術(shù);1989年01期
9 余伯平;;降低220kV山區(qū)線路雷擊跳閘率[J];四川電力技術(shù);1992年02期
10 孫萍;220kV新杭線回路雷擊跳閘率的實(shí)測與計(jì)算[J];電網(wǎng)技術(shù);1999年09期
相關(guān)會議論文 前3條
1 汪順勤;孫錄貴;張春生;;降低煤礦高壓輸電線路雷擊跳閘率的實(shí)踐探索[A];2009第五屆蘇皖兩省大氣探測、環(huán)境遙感與電子技術(shù)學(xué)術(shù)研討會專輯[C];2009年
2 張海峰;王志新;;架空避雷線和接地網(wǎng)的連接效果與雷擊跳閘率相關(guān)性研究[A];中南七省(區(qū))電力系統(tǒng)專業(yè)委員會第二十二屆聯(lián)合學(xué)術(shù)年會論文集[C];2007年
3 霍憲鵬;劉書青;劉軍;姜克華;;淺述35kV線路的防雷[A];山東電機(jī)工程學(xué)會第四屆供電專業(yè)學(xué)術(shù)交流會論文集[C];2007年
相關(guān)重要報紙文章 前2條
1 王霜娥邋張玉生;電閃雷鳴間的“攻防之戰(zhàn)”[N];國家電網(wǎng)報;2008年
2 陳也清;氣候?yàn)?zāi)害成電網(wǎng)安全“心腹之患”[N];華中電力報;2006年
相關(guān)碩士學(xué)位論文 前8條
1 吳昊;江蘇省如皋地區(qū)110kV輸電線路雷擊跳閘率分析及防雷措施研究[D];華北電力大學(xué)(北京);2016年
2 甘毅力;沖擊氣流下防雷間隙建弧率及雷擊跳閘率的計(jì)算研究[D];廣西大學(xué);2013年
3 袁文;基于改進(jìn)雷擊跳閘率計(jì)算法的輸電線路雷擊風(fēng)險評估方法研究[D];重慶大學(xué);2014年
4 陳桂陽;基于疏堵結(jié)合策略的差異化綜合防雷技術(shù)研究與應(yīng)用[D];華南理工大學(xué);2014年
5 張凱;滅弧防雷間隙改善雷擊跳閘率的效果研究[D];廣西大學(xué);2014年
6 郭玉莉;同塔雙回110千伏永滴線防雷技術(shù)應(yīng)用研究[D];華北電力大學(xué);2013年
7 陳希明;金華電網(wǎng)冰災(zāi)雷害分析[D];浙江大學(xué);2008年
8 肖劍鋒;35kV迎江線防雷措施研究[D];重慶大學(xué);2005年
,本文編號:1975270
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1975270.html