堿化草地多途徑利用對土壤質(zhì)量的影響
本文選題:土壤質(zhì)量指數(shù) + 土地利用方式; 參考:《中國科學(xué)院大學(xué)(中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所)》2017年博士論文
【摘要】:土壤是最重要的自然資源之一,是人類賴以生存和發(fā)展的物質(zhì)基礎(chǔ),其質(zhì)量好壞直接關(guān)系到區(qū)域生態(tài)安全和社會經(jīng)濟(jì)的可持續(xù)發(fā)展。土地利用和管理對土壤中眾多的生態(tài)過程都具有非常重要的影響,往往決定著土壤質(zhì)量變化的程度和方向。作為一種極為敏感和脆弱的土壤資源,鹽堿土受土地利用方式的影響遠(yuǎn)高于其它土壤類型。因此,分析不同土地利用方式對鹽堿土土壤質(zhì)量的影響,對于我們科學(xué)管理和利用土壤資源,優(yōu)化土地利用方式,促進(jìn)農(nóng)牧業(yè)的可持續(xù)發(fā)展具有重要意義。本文以松嫩堿化草地中的五種土地利用方式(自然恢復(fù)草地、人工羊草地、人工羊草割草地、人工苜蓿地、玉米地)為研究對象,從土壤的鹽堿特征、養(yǎng)分特征、碳組分特征和微生物特征四個方面全面分析土地多途徑利用對土壤質(zhì)量的影響,結(jié)果表明:(1)各土地利用方式下,土壤總鹽含量在1.10~2.30 g kg-1間波動。土地利用方式對土壤水溶性陰離子含量、總鹽含量、p H值和總堿度影響不大,而對土壤水溶性陽離子含量、電導(dǎo)率和鈉吸附比有一定影響。四種草地利用方式下,0~10 cm土層中土壤Na+含量、電導(dǎo)率和鈉吸附比明顯低于玉米地,而在10~50 cm土層中則高于玉米地。土壤電導(dǎo)率與p H值間呈極顯著的對數(shù)回歸關(guān)系,當(dāng)土壤電導(dǎo)率小于350μS cm-1時,土壤p H值隨電導(dǎo)率的增加而增加,而當(dāng)土壤電導(dǎo)率大于350μS cm-1時,土壤pH值則基本維持在10.00左右。(2)各土地利用方式下,土壤全量養(yǎng)分和速效養(yǎng)分含量的變化有所不同。與玉米地相比,四種草地利用方式中土壤全氮(N)、全磷(P)和全鉀(K)含量較高,土壤速效氮(AN)和表層速效磷(AP)含量較低,而土壤速效鉀(AK)和下層土壤速效磷(AP)含量變化不明顯。土壤養(yǎng)分元素化學(xué)計量比的變化在不同土地利用方式間具有一定的規(guī)律性。由于土壤有機(jī)碳含量的提高,導(dǎo)致四種草地利用方式中土壤的C:N、C:P和C:K比明顯高于玉米地。施肥提高了玉米地中的養(yǎng)分含量,從而使得土壤中N:P、N:K和P:K比與草地利用方式無明顯差異,而速效AN:AP、AN:AK和AP:AK比則表現(xiàn)為玉米地高于四種草地利用方式。(3)草地恢復(fù)提高了土壤有機(jī)碳和無機(jī)碳的含量。與玉米地相比,苜蓿地、羊草割草地、羊草地和自然恢復(fù)草地0~50 cm土層土壤有機(jī)碳含量分別提高了0.95、0.98、1.73和1.56 g C kg-1;而無機(jī)碳含量分別提高了2.14、1.78、0.88和1.46 g C kg-1。四種土壤易氧化有機(jī)碳組分中,極不穩(wěn)定有機(jī)碳組分(F1)占有機(jī)碳的百分比最大(40.80%~49.70%),而穩(wěn)定有機(jī)碳組分(F3)占有機(jī)碳的百分比最小(11.00%~15.50%),表明研究區(qū)內(nèi)土壤主要以極不穩(wěn)定有機(jī)碳組分為主。與玉米地相比,羊草割草地、羊草地和自然恢復(fù)草地中F1組分占有機(jī)碳的比例較低,而F2和F3組分占有機(jī)碳的比例較高,表明研究區(qū)內(nèi)草地恢復(fù)不僅促進(jìn)了土壤有機(jī)碳的截獲,還提高了土壤有機(jī)碳的穩(wěn)定性。(4)草地恢復(fù)顯著提高了土壤中活性碳組分的含量。與玉米地相比,苜蓿地、羊草割草地、羊草地和自然恢復(fù)草地中0~10 cm土層土壤活性碳的幾何平均數(shù)分別提高了34.42%、21.31%、16.39%和22.95%;而10~20 cm土層土壤活性碳的幾何平均數(shù)分別提高了41.03%、23.08%、7.69%和41.03%。同時,土壤酶的活性也顯著提高。與玉米地相比,苜蓿地、羊草割草地、羊草地和自然恢復(fù)草地中0~10 cm土層土壤酶活性的幾何平均數(shù)分別提高了65.35%、44.09%、40.94%和52.76%;而10~20 cm土層土壤酶活性的幾何平均數(shù)分別提高了76.92%、50.77%、67.69%和64.62%。相關(guān)性分析結(jié)果表明土壤有機(jī)碳、土壤易氧化有機(jī)碳和土壤微生物量碳與土壤酶活性間具有極顯著的相關(guān)關(guān)系,而土壤可溶性有機(jī)碳與土壤酶活性間的相關(guān)性相對較弱。(5)松嫩堿化草地土壤質(zhì)量評價的最小數(shù)據(jù)集中包括土壤有機(jī)碳含量(SOC)、過氧化氫酶活性(CAT)、總堿度(TA)、惰性有機(jī)碳含量(F4)和微生物量碳含量(MBC)5個土壤指標(biāo),在這5個土壤指標(biāo)中,SOC的權(quán)重最大,CAT和TA次之,F4和MBC最小。4個土壤質(zhì)量指數(shù)均能準(zhǔn)確的反應(yīng)出土地利用方式對土壤質(zhì)量的影響,但由于土壤質(zhì)量指數(shù)SQI-3在不同土地利用方式間的差異更明顯,且變異性更大,能更敏感的反映出土地利用方式變化的影響,因此更適合研究區(qū)內(nèi)土壤質(zhì)量的評價。草地恢復(fù)顯著改善了研究區(qū)內(nèi)土壤的質(zhì)量。4個土壤質(zhì)量指數(shù)的結(jié)果表明苜蓿地、羊草地和自然恢復(fù)草地中土壤質(zhì)量均較高,但考慮到本研究中苜蓿種植年限較短(僅2年)且其本身作為優(yōu)質(zhì)牧草具有較高的經(jīng)濟(jì)價值,因此認(rèn)為在研究區(qū)內(nèi)土壤條件較差的地區(qū)種植苜蓿是一種“雙贏”的土地利用方式。
[Abstract]:Soil is one of the most important natural resources, and it is the material basis for human survival and development. Its quality is directly related to regional ecological security and the sustainable development of social economy. Land use and management have very important effects on many ecological processes in the soil, which often determine the degree of soil quality change and the degree of soil quality change. Direction. As a very sensitive and fragile soil resource, the influence of the saline alkali soil on the land use is much higher than that of other soil types. Therefore, the influence of different land use methods on the soil quality of saline alkali soil is analyzed, for the scientific management and utilization of soil resources, the optimization of land use mode and the sustainable development of agriculture and animal husbandry. In this paper, five kinds of land use methods in Songnen alkaline grassland (natural grassland, artificial sheep grassland, artificial Leymus chinense grassland, artificial alfalfa land, corn land) are studied in this paper. The soil's salt and alkali characteristics, nutrient characteristics, carbon component characteristics and microbiological characteristics are comprehensively analyzed in four aspects of land use to soil. The effect of soil quality showed that: (1) the total soil salt content fluctuated between 1.10~2.30 g kg-1 under various land use ways. The land use mode had little influence on the content of soluble anion, total salt content, P H value and total alkalinity, but had a certain influence on the content of water soluble cation, electrical conductivity and sodium adsorption ratio of soil. Four kinds of grassland utilization were used. The soil Na+ content, electrical conductivity and sodium adsorption ratio in the 0~10 cm soil layer were significantly lower than that in corn land, but higher in the 10~50 cm soil layer than in the maize land. The soil conductivity and P H value showed a very significant logarithmic regression relationship. When the soil conductivity was less than 350 u S cm-1, the P H value of soil increased with the increase of electrical conductivity, while the soil conductivity was large. At 350 S cm-1, the soil pH value was basically maintained at about 10. (2) the changes of soil total nutrient and available nutrient content were different under each land use mode. Compared with the corn land, the content of total nitrogen (N), total phosphorus (P) and total potassium (K) in the use of corn land was higher, and the content of soil available nitrogen (AN) and surface available phosphorus (AP) was low. The change of soil available potassium (AK) and lower soil available phosphorus (AP) content was not obvious. The change of soil nutrient element chemical measurement ratio has certain regularity between different land use ways. Because of the increase of soil organic carbon content, the soil C:N, C:P and C:K ratio in the four grassland utilization ways are obviously higher than that of corn land. The nutrient content in the corn land, so that the soil N:P, N:K and P:K were not significantly different from the way of grassland utilization, while the quick effect AN:AP, AN:AK and AP:AK ratio were higher than the four grassland utilization ways. (3) the grassland restoration improved the soil organic carbon and the inorganic carbon content. Compared with the corn land, alfalfa, Leymus chinensis grassland, sheep The soil organic carbon content in the 0~50 cm soil layer of grassland and natural grassland was increased by 0.95,0.98,1.73 and 1.56 g C kg-1, respectively, while the content of inorganic carbon increased by 2.14,1.78,0.88 and 1.46 g C kg-1. four soil readily oxidizing organic carbon components, and the most unstable organic carbon component (F1) was the largest percentage of organic carbon (40.80%~49.70%), and stable. The percentage of organic carbon component (F3) occupies the smallest percentage of carbon (11.00%~15.50%), indicating that the soil in the study area mainly is extremely unstable organic carbon component. Compared with the corn land, the proportion of F1 components in the sheep grass and natural grassland is lower than that of the corn land, and the proportion of F2 and F3 components is higher, indicating that the study area is in the study area. Grassland restoration not only promoted the interception of soil organic carbon, but also improved the stability of soil organic carbon. (4) grassland recovery significantly increased the content of active carbon components in soil. Compared with corn land, the geometric average of active carbon in 0~10 cm soil layer of alfalfa land, Leymus chinensis, sheep grassland and natural grassland was increased by 34.4 2%, 21.31%, 16.39% and 22.95%, while the geometric average of the soil active carbon in 10~20 cm soil increased 41.03%, 23.08%, 7.69% and 41.03%., and the activity of soil enzyme increased significantly. Compared with the corn land, the geometric mean of the enzyme activity in the alfalfa, Leymus Leymus meadow, the sheep grassland and the natural recovery grassland was increased respectively. 65.35%, 44.09%, 40.94%, and 52.76%, and the geometric mean of soil enzyme activity in 10~20 cm soil increased 76.92%, 50.77%, 67.69% and 64.62%. showed that soil organic carbon, soil easy to oxidize organic carbon and soil microbial biomass carbon have a very significant correlation with soil enzyme activity, and soil soluble organic carbon. The correlation between soil enzyme activity and soil enzyme activity is relatively weak. (5) the minimum data concentration of soil quality evaluation in Songnen alkaline grassland includes soil organic carbon content (SOC), catalase activity (CAT), total alkalinity (TA), inert organic carbon content (F4) and microbial biomass carbon content (MBC) in 5 soil indexes, and SOC has the largest weight in these 5 soil indexes, CAT And TA time, F4 and MBC minimum.4 soil mass index can accurately reflect the effect of land use mode on soil quality, but because the difference of soil quality index SQI-3 between different land use ways is more obvious, and the variability is greater, it can be more sensitive to reflect the influence of land use change, so it is more suitable for the research area. The results of soil quality.4 soil quality index in the study area showed that the soil quality of alfalfa land, sheep grassland and natural restoration grassland were higher, but considering that the planting years of Alfalfa in this study were shorter (only 2 years) and it had higher economic value as high quality pasture. Therefore, planting alfalfa in the poor soil conditions in the study area is a "win-win" land use mode.
【學(xué)位授予單位】:中國科學(xué)院大學(xué)(中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:S151.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張英俊;第二十屆國際草地會議紀(jì)實[J];草業(yè)科學(xué);2005年08期
2 祝洪波;;第十五屆國際草地會議將于1985年召開[J];四川草原;1983年03期
3 遜原;;日本草地學(xué)家林兼六博士[J];國外畜牧學(xué).草原與牧草;1983年04期
4 袁術(shù);;施肥對退化干旱草地的影響[J];中國草原與牧草;1986年04期
5 馮強(qiáng);;第十六屆國際草地會議將于1989年10月在法國召開[J];中國草業(yè)科學(xué);1987年06期
6 FEE BUSBY;王明玖;;草地的重要性及草地管理面臨的挑戰(zhàn)[J];內(nèi)蒙古草業(yè);1988年02期
7 彭珂珊;;減免草地災(zāi)害 重建西部生態(tài)[J];科學(xué)新聞;2002年03期
8 王永發(fā);海東農(nóng)區(qū)草地承包的調(diào)查與思考[J];青海草業(yè);2000年02期
9 師燕;西寧市草地現(xiàn)狀分析[J];青海草業(yè);2000年04期
10 孟有達(dá),劉天明;西部開發(fā)中草地產(chǎn)業(yè)的發(fā)展[J];中國草地;2000年06期
相關(guān)會議論文 前6條
1 徐敏云;王X;;草地利用方式對農(nóng)牧交錯帶土壤碳密度的影響[A];第八屆博士生學(xué)術(shù)年會論文摘要集[C];2010年
2 鄭再明;;湘西地區(qū)不同類型草地利用的探索[A];中國草業(yè)可持續(xù)發(fā)展戰(zhàn)略——中國草業(yè)可持續(xù)發(fā)展戰(zhàn)略論壇論文集[C];2004年
3 鄭再明;;湘西地區(qū)不同類型草地利用的探索[A];中國草業(yè)可持續(xù)發(fā)展戰(zhàn)略論壇論文集[C];2004年
4 董世魁;;草地對全球變化的響應(yīng)及其適應(yīng)性管理[A];2009中國草原發(fā)展論壇論文集[C];2009年
5 周道瑋;孫海霞;孫澤威;;東北農(nóng)牧交錯區(qū)“草地-秸稈畜牧業(yè)”概論[A];中國草學(xué)會飼料生產(chǎn)委員會第15次飼草生產(chǎn)學(xué)術(shù)研討會論文集[C];2009年
6 孟有達(dá);劉天明;;西部大開發(fā)中草地產(chǎn)業(yè)的發(fā)展[A];草業(yè)與西部大開發(fā)——草業(yè)與西部大開發(fā)學(xué)術(shù)研討會暨中國草原學(xué)會2000年學(xué)術(shù)年會論文集[C];2000年
相關(guān)重要報紙文章 前5條
1 何群;中外學(xué)者研討草地草原建設(shè)[N];中國社會科學(xué)院院報;2008年
2 記者 李新安;庫魯斯臺草原治理須治本[N];伊犁日報(漢);2006年
3 郭劍峰;忻州草地:SOS![N];忻州日報;2010年
4 山東農(nóng)業(yè)大學(xué) 車野光亮 劉洪義;中國畜牧業(yè)發(fā)展與土地資源利用[N];中國畜牧報;2003年
5 胡左;草學(xué)界的“奧林匹克”在呼市開幕[N];科技日報;2008年
相關(guān)博士學(xué)位論文 前9條
1 胡琦;內(nèi)蒙古地區(qū)多時間尺度氣候變化及草地葉面積動態(tài)響應(yīng)研究[D];中國農(nóng)業(yè)大學(xué);2016年
2 王麗華;南方草地刈割后補償性生長及其對草地固碳的影響[D];四川農(nóng)業(yè)大學(xué);2015年
3 禹樸家;堿化草地多途徑利用對土壤質(zhì)量的影響[D];中國科學(xué)院大學(xué)(中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所);2017年
4 常駿;呼倫貝爾草地利用單元劃分與生態(tài)系統(tǒng)健康評價[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2010年
5 崔霞;甘南牧區(qū)草地遙感監(jiān)測與分類經(jīng)營研究[D];蘭州大學(xué);2011年
6 烏蘭;基于高分辨率遙感影像的家庭牧場草地利用單元劃分及狀態(tài)—轉(zhuǎn)換模型的建立[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2014年
7 程杰;黃土高原草地植被分布與氣候響應(yīng)特征[D];西北農(nóng)林科技大學(xué);2011年
8 金花;基于3S技術(shù)支持的草地營養(yǎng)與載畜量評價研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2008年
9 柳小妮;甘肅省草地蝗蟲預(yù)測預(yù)報專家系統(tǒng)的研究與開發(fā)[D];甘肅農(nóng)業(yè)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 聶薩茹拉;牧戶之間草地流轉(zhuǎn)的影響因素及草地退化研究[D];內(nèi)蒙古大學(xué);2015年
2 孫婉婉;定居牧民的生計策略及草地利用問題研究[D];蘭州大學(xué);2015年
3 陳旭;交城縣農(nóng)、林、草地土壤肥力狀況及改良培肥措施[D];山西農(nóng)業(yè)大學(xué);2014年
4 李謀忠;近30年西藏尼瑪?shù)貐^(qū)草地遙感動態(tài)監(jiān)測研究[D];成都理工大學(xué);2015年
5 劉皓棟;高寒地區(qū)多年生禾草混作草地適應(yīng)性評價[D];甘肅農(nóng)業(yè)大學(xué);2015年
6 于文斌;民勤縣荒漠化草地治理監(jiān)測與效益評價[D];蘭州大學(xué);2016年
7 魏博亞;不同草地利用方式對典型草原地上初級生產(chǎn)力和根系生物量的影響[D];內(nèi)蒙古大學(xué);2016年
8 劉美麗;呼倫貝爾羊草草甸草原圍封草地不同利用模式下群落特征、土壤特性研究[D];內(nèi)蒙古師范大學(xué);2016年
9 薩如拉;牧區(qū)草地利用動態(tài)變化及其驅(qū)動因素研究[D];內(nèi)蒙古師范大學(xué);2016年
10 馬紅梅;不同草地利用方式對玉樹高寒草地土壤養(yǎng)分、微生物及植被的影響[D];蘭州大學(xué);2016年
,本文編號:1818326
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1818326.html