天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 經濟論文 > 技術經濟論文 >

萘非西坦對缺血性癲癇大鼠大腦組織的保護作用及其機制研究

發(fā)布時間:2018-04-25 15:31

  本文選題:萘非西坦 + 腦缺血性癲癇模型; 參考:《南方醫(yī)科大學》2016年博士論文


【摘要】:背景:腦卒中已超越腫瘤及心血管疾病,成為我國居民第一死亡原因,其中腦梗塞占大部分,約70-80%,隨著我國人口老齡化加速,腦缺血發(fā)病人群逐年增大,且有發(fā)病年齡呈年輕化趨勢。其致死及致殘率非常高。癲癇發(fā)作是腦缺血的常見臨床表現(xiàn),在一些腦血管性疾病,諸如腦血管硬化狹窄、煙霧病、腦動靜脈畸形,其早期表現(xiàn)或首發(fā)癥狀常為癲癇發(fā)作,均因為腦血管閉塞或發(fā)生盜血現(xiàn)象所導致,癲癇發(fā)作容易引發(fā)腦組織缺氧,加重病情,嚴重影響預后。尤其是新生兒,癲癇發(fā)作是血管性腦梗死的主要征兆及臨床表現(xiàn),且會遷延不愈。缺血性癲癇發(fā)生率日益增多,嚴重影響患者生活質量和社會功能,耗費了國家及社會巨大的人力和財力。故研究腦缺血性癲癇發(fā)作機制,尋找治療新途徑,能夠帶來巨大的社會及經濟效益。癲癇是由于大腦神經元突發(fā)性異常放電,而導致短暫的大腦功能障礙的一種慢性疾病。由于異常放電的起始部位和傳遞方式的不同,癲癇發(fā)作的臨床表現(xiàn)復雜多樣,可表現(xiàn)為發(fā)作性運動、感覺、自主神經、意識及精神障礙。癲癇按病因分為兩大類,即原發(fā)性癲癇和繼發(fā)性癲癇。原發(fā)性癲癇的病因不明確,其與遺傳因素關系密切,繼發(fā)性癲癇的病因眾多,為后天獲得性病因。缺血性腦損傷是繼發(fā)性癲癇發(fā)生的重要因素,然而其潛在的機制并不完全清楚,目前已有研究發(fā)現(xiàn),腦缺血損傷后氧化應激反應、炎性反應、興奮性神經傳遞與抑制性神經傳遞失衡以及離子通道功能的受損等機制在缺血性癲癇的發(fā)生中發(fā)揮重要調控作用。γ-氨基丁酸(GABA)是一種天然存在的非蛋白質氨基酸,是哺乳動物中樞神經系統(tǒng)中重要的抑制性神經傳遞物質,約30-40%的中樞神經突觸部位以GABA為遞質。在人體大腦皮質、海馬、丘腦、基底神經節(jié)和小腦中起重要作用,并對機體的多種功能具有調節(jié)作用。在神經系統(tǒng)中,GABA轉運體的兩個亞型GAT-1和GAT-3是調節(jié)胞外GABA水平的主要因子。已有研究發(fā)現(xiàn),GAT-1和GAT-3在新皮質、蒼白球及海馬區(qū)域中均起到調控GABA轉運的作用,而GABA在大腦區(qū)域中的轉運與癲癇的發(fā)生密切相關。癲癇患者發(fā)病過程中,常伴隨腦脊液、局部神經元細胞及神經膠質細胞中氧化應激反應產物改變及促炎因子(Proinflammatory cytokines, PICs)的上升,與之相應的是,在大鼠缺血性癲癇模型中大腦頂葉/海馬區(qū)/杏仁核組織中的促炎因子IL-1β、IL-6及TNF-α明顯上調,另外進一步的研究發(fā)現(xiàn)在這些特殊的大腦區(qū)域,促炎因子IL-1β、IL-6及TNF-α的上調會改變GAT-1/GAT3的表達。萘非西坦(Nef iracetam, NEF)是一種吡咯烷酮衍生物的益智藥物,具有興奮神經的藥理作用,能夠增強海馬區(qū)的神經元發(fā)育和修復,常用于顱腦損傷和缺血性腦損害患者提高其認知功能。文獻報道萘非西坦主要通過以下機制促進神經系統(tǒng)功能康復:(1).N-甲基天冬氨酸受體(N-Methyl-D-aspartic Acid receptor)信號通路,通過激活該通路來提高記憶力,進而改善認知功能。(2).促代謝性谷氨酸受體-5 (metabotropic glutamate receptor-5)信號通路,Moriguchi等人在海馬CA1區(qū)損害的大鼠模型研究中發(fā)現(xiàn),萘非西坦通過激活該信號通路,促進記憶力的長時程增強而改善學習能力。(3).cAMP反應元件結合蛋白修飾作用,Han等人發(fā)現(xiàn)萘非西坦介導cAMP反應元件結合蛋白(cAMP response element-binding protein CREB)磷酸化,改善大鼠抑郁癥狀,改善認知能力。除了對神經系統(tǒng)具有益智作用外,已有研究發(fā)現(xiàn)萘非西坦可以減輕由杏仁核興奮或化學藥物(諸如藜蘆定、谷氨酰胺等)誘導的癲癇癥狀。有學者研究發(fā)現(xiàn)小劑量萘非西坦即能夠抑制電擊誘導的大鼠癲癇發(fā)作,但治療化學藥物誘導的癲癇癥狀卻效果欠佳。這可能與癲癇發(fā)作啟動途徑差異有關。因此萘非西坦可能是用于預防腦梗塞和(或)癲癇發(fā)作且提高認知功能的重要藥物。對于機械阻斷血管誘導的缺血性癲癇發(fā)作,尚未見文獻報道萘非西坦治療效果,據(jù)此,本課題以缺血性癲癇大鼠為模型,探討萘非西坦對缺血性腦組織損傷及并發(fā)癲癇的保護作用及其作用機制。目的:通過建立大鼠缺血性癲癇模型,探討萘非西坦對大腦頂葉/海馬區(qū)/杏仁核組織的保護作用,以及GABA機制在萘非西坦抗腦組織損傷和癲癇中發(fā)揮的作用,為闡明萘非西坦的改善癲癇發(fā)作機制及其臨床應用提供理論支持。方法:第一部分萘非西坦對缺血性腦組織損傷的保護作用研究1、將55只健康雄性SD大鼠(體重在250-300g之間)隨機分為三組,第一組為假性手術組15只;第二組為缺血性癲癇模型組(對照組)20只;第三組為缺血性癲癇模型治療組(實驗組,即萘非西坦處理組)20只。采用血管內線栓閉塞法制作缺血性非驚厥性癲癇發(fā)作(nonconvulsive seizure, NCS)模型。以戊巴比妥((按體重45mg/kg)腹腔內注射麻醉后,先置大鼠俯臥,于大鼠頭雙側額頂部(分別于前囟前l(fā)mm及后4mm,中線旁開3.5mm)對稱性鉆4個孔至皮層,植入四個不銹鋼電極。在橫竇上至人字縫后部之間置一參考電極。所有電極全部用多齒連接器固定于頭部。腦電波由電極獲取并傳輸至多參數(shù)顯示儀和數(shù)字分析系統(tǒng)。缺血前30分鐘至缺血后24小時之內對大鼠進行腦電圖監(jiān)測并描記結果,按先前Williams等人制定評判標準確定NCS波型,監(jiān)測到NCS的頻率即為該大鼠的實際NCSC發(fā)作次數(shù)。飼養(yǎng)3天后,按同樣方法將大鼠麻醉,仰臥固定在手術臺上,頸部正中切口,依次暴露并分離右側頸總動脈(CCA)、頸外動脈(ECA)及其分支、頸內動脈分叉處,以血管夾暫時夾閉阻斷ECA及其分支舌動脈和上頜動脈。于CCA分叉處近心側做一切口,插入前端蘸有石蠟的3一0單股尼龍縫線,短暫夾閉翼腭動脈(PPA)以防誤插,栓線經ICA入顱,插入深度約為20mm,至大腦前動脈近端,完全阻斷大腦中動脈起始部的血供。手術過程采用激光多普勒流量計監(jiān)測皮質腦血流量,如皮質腦血流量下降70%以上,以及術后1小時監(jiān)測到癲癇波則定義為造模成功。假性手術組未做血管阻斷,僅暴露血管后即原路縫合切口。實驗組造模成功后即刻第一次腹腔內注射萘非西坦(以15 mg/ml的濃度按體重30mg/kg腹腔注射,12小時后再注射第二次,對照組相應地注射相同劑量的生理鹽水。術后死亡者予以剔除,再隨機補充。24小時后麻醉后斷頭取頂葉/海馬腦/杏仁核腦組織,放于-80℃冰箱保存。2、根據(jù)腦電圖記錄各組大鼠癲癇發(fā)作的頻率。3、組織損傷檢測:(1)所取腦組織經甲醛固定、包埋、石蠟切片后進行HE染色觀察頂葉/海馬區(qū)/杏仁核組織大體形態(tài)、神經元損傷及炎性細胞浸潤等。(2)采用ELISA法測定各組頂葉/海馬區(qū)/杏仁核組織中TNF-α、IL-1β、 IL-6的含量,檢測組織炎性反應程度。(3)采用比色法檢測組織中MDA、GSH、GSSG的含量,觀察組織氧化反應程度。(4)采用TUNEL染色法檢測各組頂葉/海馬區(qū)/杏仁核組織中神經元凋亡。第二部分GABA機制在萘非西坦抗腦組織損傷中發(fā)揮作用的研究1、研磨頂葉/海馬區(qū)/杏仁核組織提取蛋白。免疫印跡(Western Blot)方法檢測頂葉/海馬區(qū)/杏仁核組織中GAT-1/GAT-3的蛋白含量。2、ELISA法測定各組頂葉/海馬區(qū)/杏仁核組織中GABA的水平。結果:1、萘非西坦對缺血性癲癇大鼠腦組織損傷的保護作用(1)缺血處理后的對照組大鼠發(fā)生癲癇的頻率明顯較假性手術組升高,說明缺血處理成功誘導了大鼠癲癇,腦缺血是癲癇發(fā)作病因;而萘非西坦處理后,腦缺血性癲癇大鼠發(fā)生癲癇的頻率較對照組明顯降低,統(tǒng)計學比較差異顯著(P0.05),說明萘非西坦可明顯降低大鼠癲癇的發(fā)作頻率。(2)組織形態(tài)學結果顯示:假性手術組頂葉/海馬區(qū)/杏仁核組織形態(tài)為正常狀態(tài),而缺血處理后的對照組大鼠頂葉/海馬區(qū)/杏仁核組織形態(tài)明顯受到損傷,可見明顯的炎性細胞浸潤、神經細胞出現(xiàn)溶解破壞和凋亡壞死、組織結構不完整等,萘非西坦處理后,由腦缺血引起的頂葉/海馬區(qū)/杏仁核組織損傷明顯減輕,可見組織形態(tài)相對完整、神經細胞凋亡壞死減少、且炎性細胞浸潤明顯減少。(3)假手術組大鼠頂葉/海馬區(qū)/杏仁核組織中TNF-α、IL-1β、IL-6的含量處于基礎水平;缺血處理后的對照組大鼠頂葉/海馬區(qū)/杏仁核組織中TNF-α、 IL-1β、IL-6的含量較假性手術組明顯升高,說明缺血引起大鼠頂葉/海馬區(qū)/杏仁核組織的炎性反應;而萘非西坦處理后,腦缺血性癲癇大鼠頂葉/海馬區(qū)/杏仁核組織中TNF-α、IL-1β、IL-6的含量較對照組明顯降低,統(tǒng)計學比較有顯著差異(P0.05),說明萘非西坦使得大鼠頂葉/海馬區(qū)/杏仁核組織的炎性反應顯著下降。(4)相對于假手術組大鼠頂葉/海馬區(qū)/杏仁核組織中MDA、GSSG和GSH的表達水平,缺血處理后的對照組大鼠頂葉/海馬區(qū)/杏仁核組織中MDA和GSSG的水平明顯升高,而GSH的含量明顯下降,說明缺血后大鼠頂葉/海馬區(qū)/杏仁核組織中的氧化應激反應明顯增強,而萘非西坦處理后可顯著下調MDA和GSSG的水平,并提高GSH的含量。說明萘非西坦可以有效抑制缺血引起的頂葉/海馬腦/杏仁核組織的氧化應激反應。(5) TUNEL染色結果顯示,假手術組未見明顯神經元凋亡,缺血對照組大鼠頂葉/海馬區(qū)/杏仁核組織中神經元凋亡明顯增加,而萘非西坦處理的實驗組相較于缺血性癲癇對照組神經元凋亡數(shù)量明顯下降。2、GABA機制在萘非西坦抗缺血性癲癇大鼠腦組織損傷中發(fā)揮的作用。(1)缺血處理后的對照組大鼠頂葉/海馬區(qū)/杏仁核組織中GAT-1和GAT-3的表達水平較假性手術組明顯升高,而腦缺血性癲癇模型使用萘非西坦處理后,頂葉/海馬腦/杏仁核組織中GAT-1和GAT-3的表達水平較對照組均明顯降低,統(tǒng)計學比較有顯著差異(P0.05)。(2)缺血處理后的對照組大鼠頂葉/海馬區(qū)/杏仁核組織中GABA水平較假性手術組明顯下降,而腦缺血性癲癇模型使用萘非西坦處理后,頂葉/海馬區(qū)/杏仁核組織中GABA的含量較對照組明顯升高,統(tǒng)計學比較有顯著差異(P0.05)。結論:本文采用血管內線栓閉塞法制作大鼠腦缺血性癲癇模型,并在手術后進行萘非西坦處理,分別統(tǒng)計假手術組、缺血性癲癇對照組及萘非西坦處理組大鼠術后癲癇發(fā)作頻率,并對各組大鼠頂葉/海馬區(qū)/杏仁核神經細胞損傷、炎性因子表達、氧化應激反應、GAT-1/GAT-3/GABA分子水平等進行檢測和比較分析,得到以下結論:1、萘非西坦能明顯減輕缺血性大鼠的癲癇發(fā)作頻率。2、萘非西坦能明顯減輕大鼠腦缺血性癲癇模型誘導的頂葉/海馬區(qū)/杏仁核腦組織損傷。3、萘非西坦能明顯減輕大鼠腦缺血性癲癇模型誘導的頂葉/海馬區(qū)/杏仁核腦組織炎性反應。4、萘非西坦能明顯減輕大鼠腦缺血性癲癇模型誘導的頂葉/海馬區(qū)/杏仁核腦組織氧化應激。5、萘非西坦能明顯減輕大鼠腦缺血性癲癇模型誘導的頂葉/海馬區(qū)/杏仁核腦組織細胞壞死和凋亡。6、萘非西坦通過降低GAT-l/GAT-3及提高GABA的含量來降低大鼠腦缺血性癲癇模型的的癲癇發(fā)作頻率。本研究通過機械阻斷大腦中動脈成功制作大鼠腦缺血性癲癇模型,研究發(fā)現(xiàn)萘非西坦可減輕缺血性癲癇大鼠腦組織氧化應激反應(調節(jié)MDA、GSSG和GSH含量)和炎性反應(IL-1β、IL-6及TNF-α合成分泌增加),以及降低癲癇發(fā)作頻率,且發(fā)現(xiàn)萘非西坦可能通過降低頂葉/海馬區(qū)/杏仁核腦組織中GAT-1/GAT-3含量及提高突觸間隙GABA分子的含量來降低大鼠腦缺血性癲癇模型誘導的癲癇發(fā)作頻率,為闡明萘非西坦抗缺血性癲癇腦損傷的作用機制提供新思路,為萘非西坦應用于臨床上治療缺血性癲癇提供理論支持。
[Abstract]:Background: cerebral apoplexy has transcended tumor and cardiovascular disease, and it has become the first cause of death in our country. Cerebral infarction accounts for most of them, about 70-80%. With the accelerated aging of the population in China, the population of cerebral ischemia is increasing year by year, and the age of onset is younger. The incidence of death and disability is very high. Epileptic seizures are the common presence of cerebral ischemia. Bed performance, in some cerebrovascular diseases, such as cerebral arteriosclerosis stenosis, moyamoya disease, cerebral arteriovenous malformation, its early manifestations or first symptoms are often epileptic seizures, all caused by cerebral vascular occlusion or occurrence of blood theft, epileptic seizures can easily lead to brain tissue hypoxia, aggravate the condition, and seriously affect the prognosis. Especially in the newborn, epilepsy hair. It is the main symptom and clinical manifestation of vascular cerebral infarction, and it will not recover. The incidence of ischemic epilepsy is increasing, which seriously affects the quality of life and social function of the patients, and consumes the great human and financial resources of the state and society. Epilepsy is a chronic disease caused by sudden abnormal discharge of brain neurons, which leads to transient brain dysfunction. The clinical manifestations of epileptic seizures are complex and varied because of the difference in the starting position and delivery mode of abnormal discharge, which can be characterized by paroxysmal movement, sensation, autonomic nerves, consciousness and mental disorders. The etiology of primary epilepsy is divided into two categories, namely primary epilepsy and secondary epilepsy. The etiology of primary epilepsy is not clear. It is closely related to genetic factors. The cause of secondary epilepsy is multitudinous. The etiology of secondary epilepsy is acquired. Ischemic brain injury is an important factor in secondary epilepsy. However, the underlying mechanism is not completely clear. It is found that the mechanisms of oxidative stress, inflammatory response, excitatory neurotransmission and inhibitory neurotransmission imbalance, and impairment of the function of ion channels play an important role in the pathogenesis of ischemic epilepsy after cerebral ischemia. Gamma aminobutyric acid (GABA) is a natural non protein amino acid, a central mammalian God. Through an important inhibitory neurotransmitter in the system, the central nervous synapse of about 30-40% is GABA transmitter. It plays an important role in the human brain cortex, hippocampus, thalamus, basal ganglia and cerebellum, and regulates various functions of the body. In the nervous system, the two subtypes of the GABA transporter, GAT-1 and GAT-3, are regulatory cells. The main factors of external GABA level. It has been found that GAT-1 and GAT-3 play a role in the regulation of GABA transport in the neocortex, pallidus and hippocampus, and the transport of GABA in the brain region is closely related to the occurrence of epilepsy. The change of the stress reaction product and the rise of Proinflammatory cytokines (PICs), correspondingly, the proinflammatory factor IL-1 beta, IL-6 and TNF- alpha in the cerebral parietal lobe / hippocampus / amygdala tissue in the rat model of ischemic epilepsy are obviously up-regulated, and further studies have found that in these special brain regions, proinflammatory factor IL- is found. The up-regulation of 1 beta, IL-6 and TNF- alpha will change the expression of GAT-1/GAT3. Nef iracetam (NEF) is a beneficial drug of pyrrolidone derivatives. It has the pharmacological action of the excited nerve and can enhance the development and repair of neurons in the hippocampus. It is commonly used in patients with brain injury and ischemic brain damage. NNFA mainly promotes the functional rehabilitation of the nervous system through the following mechanisms: (1) the.N- methyl aspartate receptor (N-Methyl-D-aspartic Acid receptor) signaling pathway, which improves memory by activating the pathway, and then improves cognitive function. (2) the metabolic glutamate receptor -5 (metabotropic glutamate receptor-5) signaling pathway, Morig Uchi et al. In the rat model study of CA1 damage in the hippocampus, it was found that naphthalene enhanced the long term enhancement of memory by activating the signal pathway and improved learning ability. (3) the.CAMP reaction element combined with protein modification, and Han et al. Found the cAMP reaction element binding protein (cAMP response element-binding prote) mediated by naphthalene. In CREB) phosphorylation to improve the depressive symptoms of rats and improve cognitive ability. In addition to the beneficial effects of the nervous system, a study has found that naphthalene can relieve the epileptic symptoms induced by the amygdala excitation or chemical drugs (such as Veratrum, glutamine). Induced epileptic seizures were induced, but the treatment of chemical induced epileptic symptoms was not effective. This may be related to the difference in the onset of epileptic seizures. Therefore, naphthalene may be an important drug used to prevent cerebral infarction and / or seizures and improve cognitive function. In this study, the protective effect of naphthavan on ischemic brain tissue injury and epilepsy and its mechanism of action were investigated in this study. Objective: To explore the ischemic epilepsy model of rats and explore the effect of naphthavan on the brain parietal lobe / hippocampus / amygdala tissue. Protective effect, and the role of GABA mechanism in the anti brain tissue injury and epilepsy of naphthalene, to provide theoretical support for clarifying the mechanism and clinical application of naphthavan to improve epileptic seizures. Method: the first part of the study of the protective effect of naphthalene on ischemic brain tissue injury (1), 55 healthy male SD rats (weight in 250) Three groups were randomly divided into three groups, the first group was 15 of the pseudooperation group, the second group was the ischemic epilepsy model group (control group) 20, and the third group was the ischemic epilepsy model treatment group (experimental group, that is, naphthalene treatment group) 20. The ischemic non convulsive seizure was made by the endovascular occlusion (nonconvulsive seizure, N). CS) model. After intraperitoneal injection of pentobarbital ((according to body weight 45mg/kg), the rats were placed on the prone position, at the top of the head of the rat (at the anterior fontanelle, LMM and post 4mm, the middle line 3.5mm), and the four stainless steel electrodes were implanted into the cortex, and a reference electrode was placed between the transverse sinus and the posterior part of the human character. All the electrodes were used. The multi tooth connector was fixed on the head. The EEG was obtained by the electrode and transmitted to the multi parameter display instrument and the digital analysis system. The electroencephalogram monitoring and tracing results were carried out within 30 minutes before ischemia and within 24 hours after ischemia, and the NCS wave was determined by the previous Williams et al. The frequency of monitoring NCS was the actual N of the rat. The number of CSC episodes. After 3 days, the rats were anesthetized in the same way. The supine was fixed on the operating table and the neck was incisive to expose and separate the right common carotid artery (CCA), the external carotid artery (ECA) and its branch, the fork of the internal carotid artery, and temporarily clamp and block the ECA, the branch of the tongue and the maxillary artery by the clamp, and the proximal part of the CCA branch. 3 1 0 single strand nylon sutures with paraffin were inserted into the front end, and the pterygopalatine artery (PPA) was temporarily closed to prevent misinsertion. The thrombus line was inserted into the skull by ICA, and the insertion depth was about 20mm, to the proximal part of the anterior cerebral artery, which completely blocked the blood supply in the beginning of the middle cerebral artery. The laser Doppler flowmeter was used to monitor the cortical brain blood flow, such as the cortex brain. The blood flow decreased more than 70%, and the monitoring of epileptic wave at 1 hours after the operation was defined as a successful model. The artificial operation group did not do the blood vessel blocking, only after the exposure of the blood vessels was the primary suture incision. The first time in the experimental group was the first intraperitoneal injection of naphthalene (with a concentration of 15 mg/ml of 30mg/kg intraperitoneal injection, and then reinjected after 12 hours. " At the second time, the control group was injected with the same dose of physiological saline. The patients who died after the operation were eliminated, and then the brain tissue of the parietal lobe / hippocampus / amygdala were taken after.24 hours after anesthesia, and.2 was stored at -80 centigrade refrigerator. The frequency of epileptic seizures in each group was recorded by electroencephalogram (.3) and tissue damage detection: (1) the brain tissue was taken. After fixed, embedded and paraffin section, HE staining was used to observe the gross morphology of the parietal / hippocampus / amygdala tissue, neuron damage and inflammatory cell infiltration. (2) the content of TNF- a, IL-1 beta, IL-6 in the parietal / hippocampus / amygdala tissues of each group were measured by ELISA method, and the degree of inflammatory response in the tissue was detected. (3) the colorimetric assay was used to detect MD in the tissue. The content of A, GSH, GSSG and the degree of tissue oxidation. (4) TUNEL staining was used to detect neuronal apoptosis in the parietal / hippocampus / amygdala tissues. The second part of the GABA mechanism in the anti brain tissue injury of naphthalene 1, the lapping parietal lobe / hippocampus / amygdala tissue extraction protein. Western blot (Western Blot) side The protein content of GAT-1/GAT-3 in the parietal / hippocampus / amygdala tissues was detected by the method of.2, and the level of GABA in the parietal lobe / hippocampus / amygdala tissue in each group was measured by ELISA. Results: 1, the protective effect of naphthalene on the brain damage in the ischemic epileptic rats (1) the frequency of epilepsy in the control group after the ischemic treatment was significantly more than that of the pseudooperation The group increased, indicating that ischemic treatment successfully induced epilepsy in rats and cerebral ischemia was the cause of epileptic seizures. After naphthalene treatment, the frequency of epileptic seizures in rats with cerebral ischemic epilepsy was significantly lower than that in the control group (P0.05), indicating that naphthalene could significantly reduce the frequency of epileptic seizures in rats. (2) histomorphology The results showed that the tissue morphology of the parietal lobe / hippocampus / amygdala in the artificial operation group was normal, while the tissue morphology of the parietal lobe / hippocampus / amygdala in the control group after the ischemic treatment was obviously damaged, the obvious inflammatory cell infiltration, the dissolving and necrosis of the nerve cells, the incomplete tissue structure, and so on, were found in the control group. After treatment, the injury of the parietal / hippocampus / amygdala tissue caused by cerebral ischemia was significantly reduced, the morphology of the tissue was relatively complete, the apoptosis and necrosis of the nerve cells decreased, and the infiltration of inflammatory cells decreased significantly. (3) the content of TNF- a, IL-1 beta and IL-6 in the parietal / hippocampus / amygdala tissues of the sham operation group was at the basic level; after the ischemic treatment The content of TNF- alpha, IL-1 beta and IL-6 in the parietal lobe / hippocampus / amygdala of the control group was significantly higher than that in the pseudooperative group, indicating that ischemia caused the inflammatory response in the parietal / hippocampus / amygdala tissues in rats, while the content of TNF- a, IL-1 beta, IL-6 in the parietal / hippocampus / amygdala tissues of the ischemic epileptic rats was compared with that of naphthalene. The control group decreased significantly (P0.05), indicating that the inflammatory response of the parietal / hippocampus / amygdala in the rats was significantly reduced by naphthacan. (4) the expression of MDA, GSSG and GSH in the parietal / hippocampus / amygdala tissues of the sham operation group was flat, and the parietal / hippocampus / apricot in the control group after the ischemic treatment. The levels of MDA and GSSG in the kernel increased significantly, while the content of GSH decreased significantly, indicating that the oxidative stress in the parietal / hippocampus / amygdala tissues of rats after ischemia was significantly enhanced, while naphthalene treatment could significantly reduce the level of MDA and GSSG and increase the content of GSH. The oxidative stress reaction of the parietal / hippocampal / amygdala tissues. (5) TUNEL staining showed that there was no obvious neuronal apoptosis in the sham operation group, and the apoptosis in the parietal / hippocampus / amygdala tissues of the rats of the ischemic control group was significantly increased, while the number of apoptotic neurons in the naphthalene treated group was significantly higher than that of the ischemic epilepsy control group. The effect of.2 and GABA mechanism on the brain tissue injury of ischemic epileptic rats was played by the mechanism of naphthacan. (1) the expression level of GAT-1 and GAT-3 in the parietal / hippocampus / amygdala tissues of the control group was significantly higher than that of the pseudooperative group, while the cerebral ischemic epileptic model was treated with naphthacan, the parietal lobe / hippocampus / apricot. The expression levels of GAT-1 and GAT-3 in the kernels were significantly lower than those in the control group (P0.05). (2) ischemic treatment.

【學位授予單位】:南方醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:R743.3

【相似文獻】

相關期刊論文 前10條

1 劉西梅;凌云;熊遠珍;涂國剛;馮麗華;;奈非西坦的合成研究[J];江西化工;2010年02期

2 楊建;石衛(wèi)兵;黃書卷;;合成乙拉西坦的方法改進[J];合成化學;2009年01期

3 曠春桃,胡艾希,譚英;乙拉西坦的合成[J];合成化學;2005年01期

4 陳寶泉,趙煜松,馬寧,曾海霞;奈非西坦的合成[J];中國醫(yī)藥工業(yè)雜志;2002年07期

5 盧傳廣,王洪剛,王洪鋒;乙拉西坦的合成[J];齊魯藥事;2005年08期

6 關愷珍;盧麗霞;;促智藥普拉西坦的合成[J];醫(yī)療保健器具;2007年12期

7 曠春桃;胡艾希;;益智藥乙拉西坦的合成和結構表征[J];中南林學院學報;2006年02期

8 張慶華;李自強;丁海艷;鮑美華;;大鼠血漿中回拉西坦的測定及其藥動學研究[J];長沙醫(yī)學院學報;2011年02期

9 ;認知促進劑尼拉西坦富馬酸鹽[J];藥學進展;1998年03期

10 金永壽;奈非西坦改善腦功能障礙的作用[J];國外醫(yī)藥.合成藥.生化藥.制劑分冊;1996年02期

相關會議論文 前2條

1 王國村;;治療老年性癡呆新藥普拉西坦的可行性、有效性和安全性[A];中國藥理學會第九屆制藥工業(yè)藥理學術會議論文摘要匯編[C];2000年

2 葉乾堂;方煜;肖萌萌;李志成;;藥物法索西坦及其類似物的合成[A];中國化學會第十二屆全國應用化學年會論文集[C];2011年

相關博士學位論文 前1條

1 符傳藝;萘非西坦對缺血性癲癇大鼠大腦組織的保護作用及其機制研究[D];南方醫(yī)科大學;2016年

相關碩士學位論文 前4條

1 尹琰;西坦類腦功能改善藥的合成及其無定型態(tài)的制備和藥學性質研究[D];西北大學;2014年

2 張磊;土改后至高級社前家庭經濟分配研究[D];山西大學;2014年

3 曠春桃;奈非西坦、乙拉西坦及類似物的合成研究[D];湖南大學;2003年

4 董艷飛;促智藥普拉西坦及其中間體N,,N-二異丙基乙二胺的合成[D];天津大學;2007年



本文編號:1801918

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1801918.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶d2517***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com