基于遺傳算法的電容器智能制造系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文關(guān)鍵詞: 智能制造 制造執(zhí)行系統(tǒng) 生產(chǎn)調(diào)度 遺傳算法 出處:《廣東工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在“中國制造2025”的發(fā)展戰(zhàn)略背景下,我國制造業(yè)正面臨新一輪的轉(zhuǎn)型升級(jí)。智能制造借助物聯(lián)網(wǎng)、大數(shù)據(jù)、云計(jì)算、人工智能等新一代信息技術(shù)正在快速發(fā)展,智能制造系統(tǒng)的應(yīng)用更是為實(shí)現(xiàn)智能工廠奠定了堅(jiān)實(shí)的基礎(chǔ)。實(shí)現(xiàn)信息化與工業(yè)化的深度融合將推動(dòng)我國制造業(yè)更上一個(gè)臺(tái)階。在企業(yè)信息化管理系統(tǒng)體系中,制造執(zhí)行系統(tǒng)(MES)占據(jù)著關(guān)鍵位置。本文總結(jié)分析了電容器制造行業(yè)的信息化發(fā)展現(xiàn)狀及生產(chǎn)特點(diǎn),對制造系統(tǒng)模型進(jìn)行了研究分析。以電容器制造過程中的卷材切割最優(yōu)化問題、生產(chǎn)調(diào)度問題和系統(tǒng)實(shí)現(xiàn)作為研究重點(diǎn),針對這些關(guān)鍵問題和相關(guān)技術(shù)進(jìn)行了系統(tǒng)的研究。本文主要研究內(nèi)容如下:(1)分析了智能制造和MES研究現(xiàn)狀,分析了制造系統(tǒng)體系模型,總結(jié)了MES功能體系三層模型及各層之間的信息交互,對生產(chǎn)管理模型和生產(chǎn)調(diào)度模型進(jìn)行了深入研究,對基礎(chǔ)靜態(tài)信息定義區(qū)域、生產(chǎn)調(diào)度指令下達(dá)區(qū)域和生產(chǎn)績效統(tǒng)計(jì)反饋區(qū)域做了詳細(xì)的闡述,解釋了生產(chǎn)調(diào)度中各信息流在模塊間的傳遞,并對MES功能需求和性能需求進(jìn)行了分析。(2)針對電容器制造過程中整卷原材料切割方案優(yōu)化問題進(jìn)行抽象,建立了數(shù)學(xué)模型,模型考慮了實(shí)際生產(chǎn)過程中原材料規(guī)格不統(tǒng)一和裁切目標(biāo)多樣化的特點(diǎn),設(shè)計(jì)了多目標(biāo)評價(jià)函數(shù)和約束條件。通過改進(jìn)的基于偏好的遺傳算法對該實(shí)際問題進(jìn)行理論推導(dǎo),最終通過實(shí)例數(shù)據(jù)進(jìn)行仿真試驗(yàn),仿真結(jié)果驗(yàn)證了改進(jìn)算法的有效性和穩(wěn)定性。(3)結(jié)合電容器實(shí)際生產(chǎn)車間的特點(diǎn),總結(jié)分析了電容器多工序生產(chǎn)流程,多個(gè)工序都存在并行機(jī)的特點(diǎn),建立了電容器生產(chǎn)車間調(diào)度模型。該模型屬于典型流水車間調(diào)度模型?紤]到電容器實(shí)際生產(chǎn)過程中,由于讓同一臺(tái)機(jī)器生產(chǎn)不同規(guī)格的產(chǎn)品是需要通過調(diào)整機(jī)器設(shè)備硬件結(jié)構(gòu)和軟件運(yùn)行參數(shù),這會(huì)使生產(chǎn)調(diào)度中除了生產(chǎn)時(shí)間外還需考慮換批次時(shí)的改機(jī)時(shí)間,所以建模時(shí)已經(jīng)把改機(jī)時(shí)間影響因素考慮到調(diào)度模型中。研究分析了流水車間調(diào)度求解的思路,采用遺傳算法對該模型進(jìn)行求解。由于傳統(tǒng)遺傳算法在收斂速度和全局搜索能力都存在一些缺陷,本文利用改進(jìn)的自適應(yīng)遺傳算法,讓選擇概率和交叉概率隨種群進(jìn)化過程的最優(yōu)適應(yīng)度和平均適應(yīng)度進(jìn)行自適應(yīng)調(diào)整。實(shí)例數(shù)據(jù)仿真運(yùn)算結(jié)果證明本文改進(jìn)的算法對于電容器制造企業(yè)生產(chǎn)車間調(diào)度問題求解的有效性與穩(wěn)定性。(4)設(shè)計(jì)并實(shí)現(xiàn)了電容器MES,對系統(tǒng)功能框架和網(wǎng)絡(luò)結(jié)構(gòu)拓?fù)鋱D進(jìn)行了詳細(xì)分析。對系統(tǒng)中涉及的各功能子系統(tǒng)做了詳細(xì)闡述,通過實(shí)際使用效果分析了該MES系統(tǒng)能滿足電容器制造企業(yè)的需求,給企業(yè)帶來了經(jīng)濟(jì)效益與實(shí)際使用價(jià)值,提升了電容器制造企業(yè)的管理水平。
[Abstract]:In the context of the development strategy of "made in China 2025", our manufacturing industry is facing a new round of transformation and upgrading. Intelligent manufacturing with the help of the Internet of things, big data, cloud computing. New generation of information technology, such as artificial intelligence, is developing rapidly. The application of intelligent manufacturing system has laid a solid foundation for the realization of intelligent factory. Realizing the deep integration of information technology and industrialization will push the manufacturing industry to a higher level in the enterprise information management system. Manufacturing execution system (mes) occupies a key position. This paper summarizes and analyzes the current situation of information development and production characteristics of capacitor manufacturing industry. The model of manufacturing system is studied and analyzed. The research emphasis is on the optimization of coil cutting, production scheduling and system realization in the process of capacitor manufacture. The main contents of this paper are as follows: (1) the research status of intelligent manufacturing and MES is analyzed, and the model of manufacturing system is analyzed. This paper summarizes the three-tier model of MES function system and the information exchange between each layer, deeply studies the production management model and production scheduling model, and defines the basic static information region. The region of production scheduling and the region of statistical feedback of production performance are elaborated in detail, and the transfer of information flow between modules in production scheduling is explained. The functional and performance requirements of MES are analyzed. (2) aiming at the optimization of the cutting scheme of whole roll raw materials in capacitor manufacturing process, the mathematical model is established. The model takes into account the disunity of raw material specifications and the diversification of cutting targets in the actual production process. The multi-objective evaluation function and constraint conditions are designed. The theoretical derivation of the practical problem is carried out through the improved genetic algorithm based on preference. Finally, the simulation experiment is carried out through the example data. The simulation results verify the effectiveness and stability of the improved algorithm. Combined with the characteristics of the actual capacitor production workshop, the multi-process process of capacitor production is summarized and analyzed, and the characteristics of parallel machines are found in many processes. A workshop scheduling model for capacitor production is established. The model belongs to the typical income workshop scheduling model and takes into account the actual production process of capacitors. Because it is necessary to adjust the hardware structure and software operating parameters for the same machine to produce products of different specifications, this will make the production scheduling in addition to the production time also need to consider the time of changing the machine when changing batches. Therefore, the influence factors of machine modification time have been taken into account in the scheduling model, and the idea of income job shop scheduling solution has been studied and analyzed. Genetic algorithm (GA) is used to solve the model. Because the traditional genetic algorithm has some defects in convergence speed and global search ability, the improved adaptive genetic algorithm is used in this paper. The selection probability and crossover probability are adaptively adjusted with the optimal fitness and average fitness of the population evolution process. The simulation results of the example data show that the improved algorithm is suitable for the production workshop of capacitor manufacturing enterprises. The validity and Stability of solving the degree problem. 4) the capacitor MES is designed and implemented. The functional framework and topology diagram of the system are analyzed in detail, and the functional subsystems involved in the system are described in detail. The MES system can meet the needs of capacitor manufacturing enterprises, bring economic benefits and practical use value to the enterprises, and improve the management level of capacitor manufacturing enterprises.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18;TM53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田馨;;“中國制造2025”重大戰(zhàn)略的新形勢與現(xiàn)實(shí)路徑研究[J];改革與戰(zhàn)略;2017年03期
2 張曙;;智能制造與i5智能機(jī)床[J];機(jī)械制造與自動(dòng)化;2017年01期
3 蔡恩澤;;智能制造使中國制造更聰明[J];時(shí)代金融;2017年04期
4 曹琛祺;金偉祖;;基于人工神經(jīng)網(wǎng)絡(luò)的作業(yè)車間調(diào)度算法[J];電腦知識(shí)與技術(shù);2016年30期
5 余智勇;袁逸萍;李曉娟;;改進(jìn)初始種群的遺傳算法解決柔性車間調(diào)度[J];機(jī)械設(shè)計(jì)與制造;2016年11期
6 胡乃平;郭超;;結(jié)合遺傳算子的改進(jìn)粒子群算法在輪胎硫化車間調(diào)度中的應(yīng)用[J];計(jì)算機(jī)與現(xiàn)代化;2016年10期
7 王媛媛;;智能制造領(lǐng)域研究現(xiàn)狀及未來趨勢分析[J];工業(yè)經(jīng)濟(jì)論壇;2016年05期
8 張雪艷;梁工謙;董仲慧;;基于改進(jìn)自適應(yīng)遺傳算法的柔性作業(yè)車間調(diào)度問題研究[J];機(jī)械制造;2016年06期
9 程子安;童鷹;申麗娟;于帥帥;李明;;雙種群混合遺傳算法求解柔性作業(yè)車間調(diào)度問題[J];計(jì)算機(jī)工程與設(shè)計(jì);2016年06期
10 周愷;王艷;紀(jì)志成;;混合量子粒子群算法求解模具車間調(diào)度問題[J];系統(tǒng)仿真學(xué)報(bào);2016年06期
,本文編號(hào):1479369
本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1479369.html