天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

流域人類活動(dòng)凈氮輸入的時(shí)空變化及其對(duì)河道水質(zhì)的影響

發(fā)布時(shí)間:2018-01-28 14:02

  本文關(guān)鍵詞: 凈氮輸入 GBNP模型 氮素入河負(fù)荷 入河系數(shù) 河道水質(zhì) 出處:《清華大學(xué)》2016年博士論文 論文類型:學(xué)位論文


【摘要】:人類活動(dòng)使流域中的氮輸入量不斷增加,由此引發(fā)了一系列的水環(huán)境問題。本文以新安江流域上游和長江流域上游為研究對(duì)象,分析人類活動(dòng)凈氮輸入及其在流域中的時(shí)空分布特征;采用分布式流域非點(diǎn)源污染模型GBNP,模擬氮素在流域中通過水文過程對(duì)河道的補(bǔ)給,分析入河氮素的時(shí)空特征;模擬氮素在河道中的遷移轉(zhuǎn)化過程,分析入河氮素對(duì)河道水質(zhì)的影響;谏鐣(huì)經(jīng)濟(jì)統(tǒng)計(jì)資料,論文首先分析了新安江流域上游和長江流域上游自上世紀(jì)90年代以來的人類活動(dòng)凈氮輸入量的時(shí)空分布與變化情況;然后,在兩個(gè)流域分別構(gòu)建了分布式非點(diǎn)源污染模型GBNP,模型的率定與驗(yàn)證結(jié)果顯示,模型在兩個(gè)流域適用性良好;最后,基于模擬結(jié)果,分析了流域中的入河氮素負(fù)荷與河道水質(zhì)的時(shí)空變化,并以新安江流域?yàn)槔?探討了河網(wǎng)系統(tǒng)中氮素滯留的影響因素;以長江流域上游為例,探討了人類活動(dòng)對(duì)氮素負(fù)荷和河道水質(zhì)的影響。在新安江流域的研究結(jié)果顯示,流域的主要氮素來源均為農(nóng)田氮肥施用和大氣氮沉降,人類活動(dòng)凈氮輸入量較高的區(qū)縣主要包括屯溪區(qū)、歙縣和績溪縣。人類活動(dòng)凈氮輸入與城鎮(zhèn)與農(nóng)田的面積呈顯著正相關(guān),與森林面積則呈顯著的負(fù)相關(guān)關(guān)系。GBNP的模擬結(jié)果顯示,流域年均入河總氮負(fù)荷強(qiáng)度約為1.16 ton/km2,5-8月入河總氮負(fù)荷量約占全年總負(fù)荷量的57.7%,流域總氮入河系數(shù)約為0.16;入河總氮負(fù)荷量主要取決于人類活動(dòng)凈氮輸入,并受降雨量和降雨強(qiáng)度及流域下墊面條件的影響。流域河道水質(zhì)整體良好,汛期總氮濃度低于非汛期,年均氮素滯留率約為80%;氮素在河網(wǎng)系統(tǒng)中滯留率從一級(jí)河道(河源)至干流河道遞減。在長江流域上游的研究結(jié)果顯示,流域中氮素來源主要為氮肥施用和大氣氮沉降,食品/飼料氮凈輸入量所占比例也較高,其中成都平原地區(qū)人類活動(dòng)凈氮輸入量最高;城市化通過改變城市及周邊地區(qū)的種植方式與養(yǎng)殖類型,增加了人類活動(dòng)凈氮輸入量。GBNP的模擬結(jié)果顯示,流域年均入河總氮負(fù)荷強(qiáng)度約為1.50ton/km2,其中7、8月份的入河負(fù)荷量約占全年總負(fù)荷量的65%以上,流域年均總氮入河系數(shù)約為0.26。在氮素供給充足的區(qū)域,流域總氮輸出量主要受降雨-徑流過程控制,反之,限制總氮輸出量的主要因素則是流域中氮素累積過程。汛期的河道總氮濃度顯著高于非汛期,流域年均氮素滯留率約為87%。情景分析結(jié)果表明,退耕還林和控制施肥能有效降低入河總氮負(fù)荷,減少氮素通過河道的輸出量。
[Abstract]:Human activities make the input of nitrogen in the river basin increase, which leads to a series of water environmental problems. This paper takes the upper reaches of Xinanjiang River and the upper reaches of the Yangtze River as the research objects. The characteristics of net nitrogen input from human activities and its temporal and spatial distribution in the watershed are analyzed. A distributed watershed non-point source pollution model (GBNPP) was used to simulate the recharge of nitrogen to the river channel by hydrological process in the watershed and to analyze the spatio-temporal characteristics of nitrogen in the river. To simulate the process of nitrogen migration and transformation in river, and analyze the effect of nitrogen on river water quality. Based on social and economic statistics. Firstly, the temporal and spatial distribution and variation of net nitrogen input from human activities in the upper reaches of Xinanjiang River and the upper reaches of Yangtze River since -10s are analyzed. Then, a distributed non-point source pollution model (GBNPs) was constructed in two watersheds. The results of rate determination and verification showed that the model was suitable for the two watersheds. Finally, based on the simulation results, the temporal and spatial changes of nitrogen load and channel water quality in the river basin are analyzed, and the influencing factors of nitrogen retention in the river network system are discussed by taking the Xinan River basin as an example. Taking the upper reaches of the Yangtze River as an example, the effects of human activities on nitrogen load and river water quality were discussed. The results showed that the main nitrogen sources in the basin were farmland nitrogen application and atmospheric nitrogen deposition. The areas with higher net nitrogen input from human activities mainly included Tunxi County, Shexian County and Jixi County. There was a significant positive correlation between the net nitrogen input of human activities and the area of towns and farmland. The simulated results of GBNP showed that the average annual nitrogen load intensity was about 1.16 ton/km2. From May to August, the total nitrogen load of the river accounts for 57.7 percent of the total load of the whole year, and the coefficient of the total nitrogen into the river basin is about 0.16. The total nitrogen load mainly depends on the net nitrogen input from human activities, and is affected by rainfall, rainfall intensity and underlying surface conditions. The water quality of the river is good, and the total nitrogen concentration in flood season is lower than that in non-flood season. The average annual nitrogen retention rate was about 80%. The retention rate of nitrogen in the river network system decreases from the first class river (source) to the main stream. The results of the study in the upper reaches of the Yangtze River show that the main sources of nitrogen in the river network are nitrogen fertilizer application and atmospheric nitrogen deposition. The proportion of net input of food / feed nitrogen was also high, and the net nitrogen input of human activities was the highest in Chengdu plain. Urbanization increased the net nitrogen input of human activities by changing the planting patterns and breeding types in cities and surrounding areas. The average annual nitrogen load intensity is about 1.50 ton / km ~ (2), in which the inflow load in July and August accounts for more than 65% of the total load in the whole year. The average annual total nitrogen inflow coefficient is about 0.26. In the region with sufficient nitrogen supply, the total nitrogen output of the basin is mainly controlled by the rainfall runoff process. The main factor limiting the total nitrogen output is the accumulation of nitrogen in the basin. The total nitrogen concentration in the river in flood season is significantly higher than that in the non-flood season, and the average annual nitrogen retention rate is about 87. The results of scenario analysis show that the total nitrogen concentration in the river is much higher than that in the non-flood season. Returning farmland to forest and controlling fertilization can effectively reduce the total nitrogen load and the output of nitrogen through the river.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:X52

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉靜森,黃毅華,黃春霞;淺談生物技術(shù)在上海市河道水質(zhì)修復(fù)中的應(yīng)用[J];科技資訊;2005年22期

2 劉靜森;黃毅華;黃春霞;;淺淡生物技術(shù)在上海市河道水質(zhì)修復(fù)中的應(yīng)用[J];上海水務(wù);2005年04期

3 肖群;;上海市河道水質(zhì)現(xiàn)狀及影響因素分析[J];上海水務(wù);2007年04期

4 趙華菁;;蘇州城區(qū)河道水質(zhì)提升工作的實(shí)踐與思考[J];山西建筑;2014年07期

5 鄒叢陽;張維佳;李欣華;李大鵬;;城市河道水質(zhì)恢復(fù)技術(shù)及發(fā)展趨勢[J];環(huán)境科學(xué)與技術(shù);2007年08期

6 昌云英,邊敦典,靳宏昌,孟昭強(qiáng);濟(jì)寧市城區(qū)河道水質(zhì)變清方案探討[J];山東水利;2002年06期

7 陳書玉;李鐳;孔偉;;生物接觸氧化工藝技術(shù)在河道水質(zhì)治理中的應(yīng)用[J];上海水務(wù);2008年03期

8 施曉紅;;上海松江區(qū)河道水質(zhì)分析與評(píng)價(jià)[J];企業(yè)導(dǎo)報(bào);2013年21期

9 鄭軼雄;;城市河道水質(zhì)的污染與整治[J];太原科技;2006年08期

10 鐘力云;;加藥氣浮技術(shù)在蘇南地區(qū)某市河道水質(zhì)維護(hù)工程中的運(yùn)用[J];城市道橋與防洪;2014年02期

相關(guān)會(huì)議論文 前1條

1 王秀朵;趙樂軍;王洪云;潘留明;曹仲宏;李國金;;北方某缺水城市中心城區(qū)景觀河道污染特性研究[A];2011全國給水排水技術(shù)信息網(wǎng)年會(huì)暨技術(shù)交流會(huì)論文集[C];2011年

相關(guān)重要報(bào)紙文章 前10條

1 記者 李春旭;7條入滇河道水質(zhì)達(dá)到考核目標(biāo)[N];云南日?qǐng)?bào);2013年

2 記者 王旭東 秦德勝;河道水質(zhì)污染 城市形象蒙垢[N];紹興日?qǐng)?bào);2006年

3 溫文;切斷污水源頭 改善河道水質(zhì)[N];無錫日?qǐng)?bào);2007年

4 記者 王文嫣;涉事河道水質(zhì)趨于好轉(zhuǎn) 金山、松江減免當(dāng)月水費(fèi)[N];上海證券報(bào);2013年

5 記者 顧玉祥;蘇州大規(guī)模治水[N];解放日?qǐng)?bào);2001年

6 徐南軍邋王蔚 程偉虹;河道水質(zhì)在“加減法”中持續(xù)轉(zhuǎn)優(yōu)[N];江陰日?qǐng)?bào);2008年

7 通訊員 黃麗萍;晉寧縣8條入滇河道水質(zhì)好轉(zhuǎn)[N];云南日?qǐng)?bào);2008年

8 記者  郭人宏 實(shí)習(xí)生 王姝文;市區(qū)河道水質(zhì)根本改變[N];泰州日?qǐng)?bào);2006年

9 記者 陳醉 通訊員 李家忠 葉立飛;鄞州內(nèi)河:有名有姓好“體檢”[N];浙江日?qǐng)?bào);2011年

10 記者 蔡曉磊;晉寧8條入滇河道水質(zhì)明顯好轉(zhuǎn)[N];昆明日?qǐng)?bào);2008年

相關(guān)博士學(xué)位論文 前1條

1 王艾;流域人類活動(dòng)凈氮輸入的時(shí)空變化及其對(duì)河道水質(zhì)的影響[D];清華大學(xué);2016年

相關(guān)碩士學(xué)位論文 前2條

1 王雅鈺;城市河道水質(zhì)影響因素的研究[D];蘇州科技學(xué)院;2013年

2 黃晨;蘇州市區(qū)污水截流工程建設(shè)相關(guān)技術(shù)研究[D];河海大學(xué);2007年

,

本文編號(hào):1470974

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jiliangjingjilunwen/1470974.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶64326***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com