R32渦旋壓縮機排氣溫度控制方法研究
[Abstract]:In order to deal with the two major environmental problems of "ozone layer destruction" and "global warming", HCFCs refrigerant, which is widely used in air conditioning / heat pump field, is being accelerated in accordance with the requirements of the Montreal Protocol. Developing zero GWP, low GWP environmental friendly refrigerant is an urgent problem faced by refrigeration and HVAC industry. R32 has the advantages of zero ODP, relatively low GWP, excellent thermal performance, high cycle performance and low price, and so on. It is an important medium-and long-term alternative refrigerant in the field of air-conditioning and heat pump. However, the high exhaust temperature of R 32 is one of the main problems limiting its large-scale application. Therefore, it is of great significance to study the exhaust temperature control method of R32 scroll compressor in order to promote the replacement and application of R32. In this paper, three main methods of reducing exhaust temperature, suction two-phase, intermediate liquid injection and two-phase injection, have been deeply evaluated and studied. Firstly, the dynamic distribution parameter model of scroll compressor considering the temperature distribution of vortex wall is established. On the basis of summarizing the previous thermodynamic model, the physical process of heat conduction of vortex wall in compression process is further analyzed, and the periodic boundary condition is transformed into steady state boundary condition by time scale analysis. Thus, the process is simplified to a one-dimensional steady-state heat conduction process with convective heat transfer boundary conditions. The model is modified and verified by experimental data. The results show that the model has high accuracy. Secondly, based on the verification model, the effects of the three methods on the internal parameters, exhaust temperature, performance and operating range of the compressor are deeply analyzed, and the system implementation methods of the three methods are further discussed. The results show that all the three methods can effectively reduce the exhaust temperature of the R32 scroll compressor, but have different effects on the performance of the compressor. The two-phase injection can not only reduce the exhaust temperature, but also significantly increase the cooling capacity of the compressor. COP, proposed two kinds of two-phase injection modes: single injection branch and double injection branch. Then, the R32 scroll compressor experimental bench, which can be used in three exhaust temperature control methods, is set up. The performance of the three methods under compressor and system conditions is further studied by experiments. The results show that the low pressure cavity compressor has the lowest actual suction dryness when the two phases are aspirated, and the proper diameter injection channel should be chosen to avoid the liquid vaporization when the liquid is injected in the middle of the compressor. The two-phase injection shows great performance advantage under both cooling and heating conditions. The evaporation temperature and condensation temperature of the system are shifted after three kinds of techniques. When two-phase injection is used, the evaporation temperature decreases, the condensation temperature increases, and there is an optimal injection ratio. Finally, the design and control method of two-phase injection system with single injection branch is studied by simulation. The ideal injection point is pointed out from the angle of compressor. By optimizing the size of the intermediate heat exchanger and the control of the intermediate pressure, the actual injection point approaches the ideal injection point. The results show that the area of the intermediate heat exchanger in the two-phase refrigerant injection system has a reasonable range, and the intermediate pressure can be optimized according to the exhaust temperature.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU83
【相似文獻】
相關(guān)期刊論文 前10條
1 楊驊,屈宗長;渦旋壓縮機泄漏研究綜述[J];流體機械;2003年11期
2 彭斌,劉振全,李海生;變頻渦旋壓縮機測試系統(tǒng)的研究[J];化工自動化及儀表;2005年03期
3 彭斌;李超;劉振全;;天然氣變頻渦旋壓縮機的密封研究[J];潤滑與密封;2005年06期
4 彭斌;劉振全;張洪生;張力;;天然氣變頻渦旋壓縮機的性能研究[J];蘭州理工大學(xué)學(xué)報;2006年06期
5 陳榮;王文;;微型渦旋壓縮機泄漏的理論計算[J];流體機械;2008年06期
6 戴金躍;張小軍;;目前空調(diào)渦旋壓縮機發(fā)展的技術(shù)動向[J];鎮(zhèn)江高專學(xué)報;2008年03期
7 胡躍華;范海明;李海生;陳英華;李迎;;渦旋壓縮機虛擬樣機運動仿真的研究[J];煤礦機械;2009年02期
8 陳凱;劉益才;張建平;辛天龍;陳思明;;無油渦旋壓縮機的關(guān)鍵技術(shù)綜述及其發(fā)展展望[J];真空與低溫;2011年01期
9 平賀正治;莫培杰;;車輛空調(diào)用渦旋壓縮機[J];國外鐵道車輛;1989年04期
10 Naoshi Uchikawa;莫培杰;;空調(diào)用渦旋壓縮機[J];國外鐵道車輛;1990年05期
相關(guān)會議論文 前10條
1 王廷奇;;內(nèi)部高壓渦旋壓縮機用電機設(shè)計研究[A];走中國創(chuàng)造之路——2011中國制冷學(xué)會學(xué)術(shù)年會論文集[C];2011年
2 周英濤;鄭星;;渦旋壓縮機起動卸載結(jié)構(gòu)的研究[A];中國制冷學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
3 廖全平;王曉剛;謝榮;;異常環(huán)境下渦旋壓縮機應(yīng)用[A];2001年全國空調(diào)器、電冰箱(柜)及壓縮機學(xué)術(shù)交流會論文集[C];2001年
4 王寶龍;李先庭;彥啟森;石文星;;渦旋壓縮機通用幾何模型研究[A];全國暖通空調(diào)制冷2004年學(xué)術(shù)年會資料摘要集(2)[C];2004年
5 趙遠揚;李連生;束鵬程;;熱泵用渦旋壓縮機可靠性研究[A];第六屆全國低溫與制冷工程大會會議論文集[C];2003年
6 曹霞;陳芝久;;立式高壓型全封閉渦旋壓縮機的高機械效率分析[A];上海市制冷學(xué)會一九九九年學(xué)術(shù)年會論文集[C];1999年
7 曹霞;陳芝久;;任意實數(shù)圈渦旋壓縮機的幾何分析[A];上海市制冷學(xué)會一九九九年學(xué)術(shù)年會論文集[C];1999年
8 G.F.HUNDY;付偉純;;谷輪冷凍渦旋壓縮機及其應(yīng)用[A];2000年中國食品冷藏鏈大會暨冷藏鏈配套裝備展示會論文集[C];2000年
9 唐甜甜;汪軍;束鵬程;;渦旋壓縮機動力模型的研究[A];第六屆全國低溫與制冷工程大會會議論文集[C];2003年
10 劉強;樊水沖;何珊;;噴氣增焓渦旋壓縮機在空氣源熱泵熱水器中的應(yīng)用[A];第十三屆全國熱泵與系統(tǒng)節(jié)能技術(shù)大會論文集[C];2008年
相關(guān)重要報紙文章 前4條
1 記者 李晚成 通訊員 鄢立民;無油渦旋壓縮機生產(chǎn)基地開建[N];江西日報;2010年
2 郭壽文;首個無油渦旋壓縮機生產(chǎn)基地開建[N];中國工業(yè)報;2010年
3 謝榮;春蘭5HP渦旋壓縮機技術(shù)獲突破[N];消費日報;2007年
4 陳曉平;延伸價值鏈[N];21世紀(jì)經(jīng)濟報道;2012年
相關(guān)博士學(xué)位論文 前6條
1 肖根福;無油渦旋壓縮機腔內(nèi)流場建模仿真及實驗研究[D];南昌大學(xué);2013年
2 李超;驅(qū)動軸承內(nèi)嵌式渦旋壓縮機特性研究[D];蘭州理工大學(xué);2007年
3 余洋;渦旋壓縮機動力特性及仿真模擬研究[D];蘭州理工大學(xué);2014年
4 劉興旺;提高變頻渦旋壓縮機壓縮性能的方法研究[D];蘭州理工大學(xué);2011年
5 趙Z,
本文編號:2443201
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2443201.html