基于粒子群優(yōu)化算法的結(jié)構(gòu)可靠度敏感性分析方法:相對(duì)收斂率(英文)
[Abstract]:Aim: to improve the efficiency of reliability index calculation by using particle swarm optimization (PSO) algorithm, and to study the statistical characteristics of particle swarm in different dimensions and the physical meaning of convergence rate in the process of PSO solution. The relationship between particle convergence rate and the sensitivity of random variables in the optimization process is studied. A new method for reliability sensitivity analysis is proposed. Innovation: 1. According to the different convergence rates of particles in different dimensions in the process of PSO optimization, the sensitivity of the random variables is represented by the convergence rate. 2. An optimization strategy group is established to avoid fluctuations in the process of particle swarm convergence, to ensure the continuous convergence of particles in different dimensions within the optimization strategy group, and to define the relative convergence rate to characterize the sensitivity of random variables. Methods: 1. According to the geometric meaning of Hasofer-Lind reliability index, the optimization model of reliability index is established, and the improved PSO is used to solve the reliability index and check point, and the feasible strategy method is adopted to deal with the constraint condition. 2. By theoretical derivation, the optimal evaluation function set of PSO iterative process is constructed. (18), sets of optimization strategies are established to ensure the continuous convergence of particles in different dimensions, and the relative convergence rate formula (19); 3), which represents the sensitivity of random variables, is proposed. The feasibility and effectiveness of the proposed method are verified by numerical simulation and comparison with the traditional sensitivity analysis results based on gradient. Conclusion: 1. The relative convergence rate can characterize the sensitivity of random variables. 2. The optimization strategy group avoids the fluctuation of relative convergence rate and ensures the continuous convergence of candidate particle variation coefficient curve in the solution space. 3. The smaller the coefficient of variation of the candidate solutions of random variables in the optimization strategy group, the more sensitive the random variables represented. 4. Reliability and sensitivity analysis based on PSO is more effective for complex problems.
【作者單位】: National
【基金】:Project supported by the National Natural Science Foundation of China(No.51478039) the Fundamental Research Funds for the Central Universities of China(Nos.FRF-TP-14-063A2 and FRF-TP-15-001C1) the Beijing Nova Program(No.Z151100000315053) the 111 Project(No.B12012) the Ningbo Science and Technology Project(No.2015C110020),China
【分類號(hào)】:TU311.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前9條
1 李貞,何f ,鄔俏鈞,閆榮;場(chǎng)地開(kāi)發(fā)的景觀與生態(tài)敏感性分析——以深圳梧桐山南坡廢棄石場(chǎng)為例[J];熱帶地理;2001年04期
2 劉猛;;熱活性建筑系統(tǒng)部分參數(shù)的敏感性分析[J];發(fā)電與空調(diào);2014年02期
3 邢磊;殷志祥;;無(wú)站臺(tái)柱雨棚結(jié)構(gòu)的敏感性分析與安全性評(píng)價(jià)[J];建筑結(jié)構(gòu);2013年S2期
4 牛巖;鮑小成;熊宗海;王永衛(wèi);;基于灰色關(guān)聯(lián)分析法的邊坡敏感性分析[J];地質(zhì)科技情報(bào);2014年03期
5 高園;王瑜;宋黎;王凌躍;;基于工程項(xiàng)目T、Q、C多目標(biāo)綜合優(yōu)化的評(píng)價(jià)[J];沿海企業(yè)與科技;2006年12期
6 屠冰冰;趙冬;;MDOFS累積塑性變形能的理論研究與敏感性分析[J];振動(dòng)與沖擊;2014年13期
7 沙特;;淺談經(jīng)濟(jì)原理在工程評(píng)估中的應(yīng)用[J];現(xiàn)代交際;2014年04期
8 杜玉東;;施工過(guò)程中圍巖參數(shù)對(duì)測(cè)線收斂的敏感性分析[J];鐵道工程學(xué)報(bào);2010年01期
9 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 邢磊;殷志祥;;無(wú)站臺(tái)柱雨棚結(jié)構(gòu)的敏感性分析與安全性評(píng)價(jià)[A];城市地下空間綜合開(kāi)發(fā)技術(shù)交流會(huì)論文集[C];2013年
相關(guān)碩士學(xué)位論文 前1條
1 艾喬;基于GIS的風(fēng)景區(qū)生態(tài)敏感性分析評(píng)價(jià)研究[D];西南大學(xué);2007年
,本文編號(hào):2277806
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2277806.html