T形鋼管混凝土組合柱—鋼筋混凝土梁邊節(jié)點(diǎn)抗震性能研究
[Abstract]:Concrete filled steel tubular special-shaped column structure is developed on the basis of reinforced concrete special-shaped column structure. Its greatest advantages are: the use of outer steel tube to improve the bearing capacity and ductility of core concrete, to solve the common reinforced concrete special-shaped column structure can not be used in high-rise buildings and high seismic fortification area defects, at the same time. In recent years, scholars at home and abroad have little research on the beam-column joints of concrete filled steel tubular special-shaped columns, and all of them focus on the connection between special-shaped columns and steel beams. For the connection form of concrete filled steel tubular special-shaped columns and reinforced concrete beams, as well as In this paper, T-shaped concrete-filled steel tubular composite columns are designed and manufactured with the support of Hubei Natural Science Foundation in 2012 (2012 FFB05112) and China Central University Funding Project (WUT2014-IV-125) in 2014. The experimental study, finite element numerical simulation and theoretical analysis are combined to study the mechanical and seismic performance of the two types of joints. The main research contents and achievements are summarized as follows: (1) With the length of corbel, the thickness of end plate, the diameter of high-strength bolts, the reinforced ribs are set. Whether it is or not, the diameter of ring bars and the setting mode of ring bars are the main parameters. According to the scale of 1:2, 10 joints with extended end-plate and 7 joints with reinforced ring bars are manufactured. Hysteresis loops, skeleton curves, displacements, relative angular ductility of beams and columns, and energy dissipation performance are studied. The influence degree of each factor on the bearing capacity and energy dissipation capacity of the joints is determined by the analysis of test parameters. The design suggestions and construction measures of the joints are put forward. The hysteretic curves of the specimens are full, the joints of the extended end-plate are inverted S-shaped, the equivalent viscous damping coefficient EH is between 0.147 and 0.176, and the displacement ductility coefficient is between 3.48 and 6.29; the joints of the reinforced annular bars are arched, EH is between 0.199 and 0.262, and EH is between 2.88 and 4.51; the two types of joints are the most common. The large shear angle ranges from 0.796% to 4.488% of the relative ultimate rotation angle, and the influence of shear deformation in the joint domain on the structural deformation can be neglected. The joints have good seismic resistance. (2) The skeleton curve and hysteretic curve of the tested joints are analyzed and fitted, and the restoring force models of the two types of joints are established by using the de-dimensionalization method. The model is composed of three-fold skeleton curve model, stiffness degradation law and hysteretic criterion. The measured skeleton curve and hysteretic curve are compared with the established restoring force model curve, which proves the correctness of the proposed joint restoring force model. (3) Monotonic loading and cyclic loading are simulated and analyzed by nonlinear finite element software ABAQUS. Comparing the calculated results with the experimental data to verify the rationality of the finite element model; through the analysis of the working mechanism and stress distribution characteristics of the joints, the crack development process and shear stress variation law of the joints are revealed. On this basis, the axial compression ratio, beam-column ratio are investigated. The results show that the load-displacement curves at the end of the beam are in good agreement with the experimental values; the shear force of the joints is mainly supported by baroclinic bars formed in the core area, and the ratio of bracket webs is small; stiffening ribs can be effective. It can restrain the end-plate prying deformation and reduce the stress concentration in the joint area; when the load at the end of the beam reaches the extreme value, the steel tube wall of the reinforced ring-bar connection joint has obvious buckling section within the height of 1/3 beam of the outer flange of the corbel flange, and the steel tube can be partly thickened to reinforce the joint; the axial compression ratio and the beam-column stiffness ratio are smaller than the bearing capacity of the joint, but the beam-column stiffness ratio is lower. The increase of linear stiffness decreases to a certain extent compared with the initial stiffness of the joints; the increase of concrete strength grade of the frame beam improves the bearing capacity of the two types of joints, especially the reinforced ring-bar joints; the bending capacity of the joints increases significantly with the increase of reinforcement ratio, but when the reinforcement ratio of the frame beam exceeds 1.8%, the bearing capacity of the joints increases. (4) On the basis of experimental and theoretical research, considering the influence of end plate thickness, bolt diameter and stiffener rib on the bending capacity of the joint, the calculation formulas for determining the type of high-strength bolt and the size of end plate are established; the internal force transfer mechanism in the core area of the two types of joints is analyzed, and the joint level is given. Considering the influence of axial pressure, high strength bolt prestressing and flange concrete, the shear bearing capacity formulas of two kinds of joint core area are established and compared with the experimental data of related literature. The results show that the calculated values of bearing capacity and the experimental values are in good agreement. The research results will be used to compile special-shaped joints. The technical specification of concrete filled steel tubular structure provides experimental basis and theoretical support.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU398.9;TU352.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王先鐵;周超;馬尤蘇夫;楊航東;王連坤;;方鋼管混凝土平面框架的恢復(fù)力模型研究[J];地震工程與工程振動(dòng);2014年05期
2 趙毅;徐禮華;程康;劉斌;;勁性環(huán)梁式鋼管混凝土節(jié)點(diǎn)受力性能研究[J];工程力學(xué);2013年S1期
3 吳波;趙新宇;楊勇;劉瓊祥;;薄壁圓鋼管再生混合柱-鋼筋混凝土梁節(jié)點(diǎn)的抗震試驗(yàn)與數(shù)值模擬[J];土木工程學(xué)報(bào);2013年03期
4 韋宏;陳添明;劉慶輝;;鋼筋混凝土梁-方鋼管混凝土柱環(huán)梁節(jié)點(diǎn)靜力試驗(yàn)研究及設(shè)計(jì)方法[J];建筑結(jié)構(gòu)學(xué)報(bào);2013年01期
5 周鵬;薛建陽(yáng);陳茜;葛廣全;葛鴻鵬;侯文龍;;矩形鋼管混凝土異形柱-鋼梁框架節(jié)點(diǎn)抗震性能試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2012年08期
6 許成祥;吳贊軍;曾磊;張繼承;馬進(jìn)軍;;T形鋼管混凝土柱-工字鋼梁框架頂層邊節(jié)點(diǎn)抗震性能試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2012年08期
7 曲慧;;鋼管混凝土柱-鋼筋混凝土梁連接節(jié)點(diǎn)抗震性能的機(jī)理分析[J];工程力學(xué);2012年07期
8 林明森;戴紹斌;劉記雄;彭忠;;T形鋼管混凝土柱與鋼梁外伸端板連接節(jié)點(diǎn)抗震性能試驗(yàn)研究[J];地震工程與工程振動(dòng);2012年02期
9 施剛;袁鋒;霍達(dá);石永久;王元清;;鋼框架梁柱節(jié)點(diǎn)轉(zhuǎn)角理論模型和測(cè)量計(jì)算方法[J];工程力學(xué);2012年02期
10 丁永君;尚奎杰;萬(wàn)方貴;秦穎;;矩形鋼管混凝土柱-H型鋼梁節(jié)點(diǎn)抗震性能試驗(yàn)研究及有限元分析[J];建筑結(jié)構(gòu)學(xué)報(bào);2012年02期
相關(guān)博士學(xué)位論文 前9條
1 林明森;T形鋼管混凝土組合柱—鋼梁連接節(jié)點(diǎn)抗震性能研究[D];武漢理工大學(xué);2012年
2 李威;圓鋼管混凝土柱—鋼梁外環(huán)板式框架節(jié)點(diǎn)抗震性能研究[D];清華大學(xué);2011年
3 黃頻;端板螺栓連接鋼—混凝土組合節(jié)點(diǎn)試驗(yàn)及力學(xué)性能研究[D];湖南大學(xué);2011年
4 于航;鋼管混凝土節(jié)點(diǎn)抗震與框架抗連續(xù)性倒塌性能研究[D];哈爾濱工業(yè)大學(xué);2010年
5 劉義;型鋼混凝土異形柱框架節(jié)點(diǎn)抗震性能及設(shè)計(jì)方法研究[D];西安建筑科技大學(xué);2009年
6 黃俊;異形鋼管混凝土組合柱抗震性能研究[D];武漢大學(xué);2009年
7 劉威;鋼管混凝土局部受壓時(shí)的工作機(jī)理研究[D];福州大學(xué);2005年
8 戴紹斌;鋼框架—混凝土筒住宅結(jié)構(gòu)性能與配套技術(shù)研究[D];武漢理工大學(xué);2004年
9 周天華;方鋼管混凝土柱—鋼梁框架節(jié)點(diǎn)抗震性能及承載力研究[D];西安建筑科技大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 李雪平;T形鋼管混凝土柱—鋼梁框架頂層邊節(jié)點(diǎn)非線性分析及設(shè)計(jì)方法研究[D];長(zhǎng)江大學(xué);2012年
2 馬超;T形鋼管混凝土柱—鋼梁框架邊柱外加強(qiáng)環(huán)節(jié)點(diǎn)抗震性能研究[D];長(zhǎng)江大學(xué);2012年
3 萬(wàn)波;異形鋼管混凝土柱—鋼梁框架中柱節(jié)點(diǎn)受力性能試驗(yàn)研究[D];長(zhǎng)江大學(xué);2012年
4 吳贊軍;T形鋼管混凝土柱—鋼梁框架頂層邊節(jié)點(diǎn)抗震性能研究[D];長(zhǎng)江大學(xué);2012年
5 高代明;方鋼管混凝土柱-H型鋼梁節(jié)點(diǎn)的低周反復(fù)荷載試驗(yàn)研究[D];青島理工大學(xué);2011年
6 單南平;低周反復(fù)荷載作用下方鋼管混凝土環(huán)梁節(jié)點(diǎn)試驗(yàn)研究[D];華南理工大學(xué);2011年
7 侯文龍;方鋼管混凝土異形柱與鋼梁節(jié)點(diǎn)性能試驗(yàn)與理論研究[D];西安建筑科技大學(xué);2011年
8 傅冬;L形鋼管混凝土組合柱試驗(yàn)研究及有限元分析[D];武漢理工大學(xué);2010年
9 馬良璇;帶抗剪環(huán)的鋼管混凝土柱環(huán)梁節(jié)點(diǎn)受力性能研究[D];重慶大學(xué);2008年
10 孫丙友;鋼管混凝土—鋼筋混凝土環(huán)梁節(jié)點(diǎn)抗震性能有限元模擬[D];合肥工業(yè)大學(xué);2007年
,本文編號(hào):2194157
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2194157.html