天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

復(fù)合埋管式土壤源熱泵系統(tǒng)性能研究

發(fā)布時(shí)間:2018-07-03 03:01

  本文選題:復(fù)合埋管式土壤源熱泵系統(tǒng) + 換熱性能; 參考:《重慶大學(xué)》2015年碩士論文


【摘要】:土壤源熱泵作為一種高效節(jié)能的可再生能源利用技術(shù),近年來備受關(guān)注。目前對土壤源熱泵系統(tǒng)性能的研究主要集中在單獨(dú)采用水平或垂直埋管換熱器時(shí)土壤源熱泵系統(tǒng)的性能研究,而利用水平埋管與垂直埋管聯(lián)合換熱的土壤源熱泵系統(tǒng)研究成果還較少。本文將這種采用水平埋管與垂直埋管聯(lián)合換熱的土壤源熱泵系統(tǒng)稱為復(fù)合埋管式土壤源熱泵系統(tǒng),并對其進(jìn)行研究。本文基于天津市某辦公建筑,從熱泵機(jī)組出力負(fù)荷入手,根據(jù)建筑實(shí)際條件及經(jīng)濟(jì)性初步確定兩種埋管換熱器承擔(dān)負(fù)荷配比,進(jìn)而制定針對該辦公建筑負(fù)荷特性的復(fù)合埋管式土壤源熱泵系統(tǒng)運(yùn)行控制策略。分別建立水平埋管換熱器和垂直埋管換熱器三維傳熱模型,通過分別計(jì)算分析水平埋管和垂直埋管換熱器的換熱性能,完成復(fù)合埋管式土壤源熱泵系統(tǒng)的設(shè)計(jì)方案。通過分析復(fù)合埋管式土壤源熱泵地埋側(cè)系統(tǒng)能效及經(jīng)濟(jì)性,肯定復(fù)合埋管式土壤源熱泵系統(tǒng)的優(yōu)勢所在,并對復(fù)合埋管式換熱器水力工況進(jìn)行優(yōu)化。最后通過實(shí)驗(yàn)驗(yàn)證地埋管換熱器三維傳熱數(shù)值計(jì)算模型的正確性。首先基于天津市某辦公建筑建立負(fù)荷計(jì)算模型,計(jì)算全年逐時(shí)建筑負(fù)荷,并選擇合適的熱泵機(jī)組,得到制冷和制熱工況下機(jī)組的逐時(shí)出力負(fù)荷,根據(jù)建筑實(shí)際條件初步確定兩種換熱器承擔(dān)負(fù)荷配比,進(jìn)而制定符合該建筑負(fù)荷特性的復(fù)合埋管式土壤源熱泵系統(tǒng)運(yùn)行控制策略。分別建立水平埋管和垂直埋管三維傳熱溫度場數(shù)學(xué)模型,通過數(shù)值計(jì)算分析水平埋管和垂直埋管換熱器的換熱性能,進(jìn)而確定能夠滿足該建筑的制冷和制熱需求的水平埋管換熱器換熱單元數(shù)及垂直埋管換熱器鉆井?dāng)?shù),完成復(fù)合埋管換熱器設(shè)計(jì)。負(fù)荷特性對復(fù)合埋管式換熱器換熱性能影響較大,在醫(yī)院負(fù)荷特性及復(fù)合埋管換熱器設(shè)計(jì)負(fù)荷配比等條件下,數(shù)值計(jì)算結(jié)果證明采用復(fù)合埋管式土壤源熱泵系統(tǒng)并不合適。通過建立復(fù)合埋管式土壤源熱泵系統(tǒng)能耗各組成部分模型,計(jì)算該辦公建筑在制冷期和制熱期的系統(tǒng)能耗,并得到夏季熱泵機(jī)組COP與冷凝器進(jìn)水溫度的關(guān)系及冬季熱泵機(jī)組COP與蒸發(fā)器進(jìn)水溫度的函數(shù)關(guān)系,進(jìn)而得到在制冷和制熱工況下熱泵機(jī)組及復(fù)合埋管式土壤源熱泵系統(tǒng)的逐時(shí)COP。采用費(fèi)用年值作為指標(biāo),對不同承擔(dān)負(fù)荷配比下復(fù)合埋管式土壤源熱泵系統(tǒng)經(jīng)濟(jì)性進(jìn)行分析。當(dāng)垂直埋管換熱器承擔(dān)負(fù)荷配比逐漸增大時(shí),系統(tǒng)費(fèi)用年值基本呈現(xiàn)逐漸上升的趨勢,但均低于獨(dú)立垂直埋管換熱器土壤源熱泵系統(tǒng)費(fèi)用年值。提出換熱經(jīng)濟(jì)值的定義,以初步判斷在滿足換熱要求條件下采用水平埋管換熱器代替垂直埋管換熱器承擔(dān)負(fù)荷是否經(jīng)濟(jì)。結(jié)合復(fù)合埋管換熱器的換熱性能和經(jīng)濟(jì)性,總結(jié)得到復(fù)合埋管式土壤源熱泵最佳承擔(dān)負(fù)荷配比的方案選擇方法。為減少數(shù)值換熱計(jì)算時(shí)間,本文均采用水平埋管和垂直埋管換熱器獨(dú)立換熱計(jì)算的方式評估換熱器換熱性能,且通過比較聯(lián)合換熱計(jì)算與獨(dú)立換熱計(jì)算結(jié)果可知,在該建筑負(fù)荷特性及水平和垂直埋管承擔(dān)負(fù)荷配比條件下,獨(dú)立換熱計(jì)算結(jié)果與聯(lián)合換熱計(jì)算結(jié)果差異性較小,可視為獨(dú)立換熱計(jì)算對換熱結(jié)果的影響并不大。提出了兩種復(fù)合埋管式土壤源熱泵系統(tǒng)地埋側(cè)水泵的設(shè)置方法,通過水力計(jì)算,并利用環(huán)狀管網(wǎng)水力計(jì)算與水力工況分析軟件得到這兩種方案在實(shí)際選取水泵參數(shù)條件下各埋管換熱器環(huán)路流量,得到更有利于該辦公建筑復(fù)合埋管式土壤源熱泵系統(tǒng)水力工況的地埋側(cè)水泵設(shè)置方案,為復(fù)合埋管式土壤源熱泵系統(tǒng)中埋管換熱器水力工況的優(yōu)化提供了新思路。通過對獨(dú)立埋管換熱器進(jìn)行實(shí)測,分別驗(yàn)證水平埋管和垂直埋管獨(dú)立換熱計(jì)算模型的正確性。再對復(fù)合埋管式土壤源熱泵系統(tǒng)進(jìn)行實(shí)測,并對比水平埋管換熱器和垂直埋管換熱器獨(dú)立換熱計(jì)算結(jié)果與聯(lián)合換熱計(jì)算結(jié)果,發(fā)現(xiàn)在實(shí)驗(yàn)室測試條件下,獨(dú)立換熱計(jì)算結(jié)果與實(shí)測結(jié)果有較大差別,而聯(lián)合換熱計(jì)算結(jié)果更準(zhǔn)確,因此采用獨(dú)立換熱計(jì)算代替聯(lián)合換熱計(jì)算的方法必須在負(fù)荷特性與承擔(dān)負(fù)荷配比匹配條件下使用。
[Abstract]:As a highly efficient and energy-saving renewable energy utilization technology, soil source heat pump has attracted much attention in recent years. At present, the performance of soil source heat pump system is mainly focused on the performance research of soil source heat pump system with horizontal or vertical pipe heat exchangers, and the source heat of soil source heat exchanger combined with horizontal and vertical buried pipes is used. The research results of the pump system are still less. In this paper, the soil source heat pump system, which is combined with the horizontal buried pipe and the vertical buried pipe, is called the compound buried pipe type soil source heat pump system and has been studied. Based on an office building in Tianjin, starting with the load load of the heat pump unit, it is preliminarily determined according to the actual conditions and economy of the building. Two kinds of pipe heat exchangers bear the load ratio, and then the operation control strategy of the composite buried pipe type soil source heat pump system aiming at the load characteristic of the office building is formulated. The three dimensional heat transfer model of the horizontal pipe heat exchanger and the vertical pipe heat exchanger is established respectively. A composite buried pipe type soil source heat pump system is designed. Through the analysis of the energy efficiency and economy of the buried pipe type soil source heat pump system, the advantages of the composite buried pipe type soil source heat pump system are affirmed and the hydraulic conditions of the compound pipe heat exchanger are optimized. Finally, the three-dimensional heat transfer of the buried pipe heat exchanger is verified by the experiment. The correctness of the numerical model. First, based on a load calculation model of an office building in Tianjin, the load of hourly building in the whole year is calculated, and a suitable heat pump unit is selected to get the time to hour force load of the unit under the conditions of refrigeration and heat production. According to the actual conditions of the building, the two kinds of heat exchangers are initially determined to bear the load ratio, and then the characters are formulated. The operation control strategy of the composite buried pipe type soil source heat pump system is combined with the load characteristic of the building. The mathematical model of the three-dimensional heat transfer temperature field of the horizontal and vertical buried pipes is set up respectively. The heat transfer performance of the horizontal and vertical buried pipe heat exchangers is analyzed by numerical calculation, and then the level of the cooling and heating demand of the building can be met. The number of heat exchanger and the number of vertical heat exchanger, the design of the compound pipe heat exchanger is completed. The load characteristics have great influence on the heat transfer performance of the composite pipe heat exchanger. Under the condition of the load characteristic of the hospital and the design load ratio of the compound pipe heat exchanger, the numerical calculation results prove that the compound buried pipe type soil source heat pump is used. The system is not suitable. Through the establishment of the model of the energy consumption of the composite buried pipe type soil source heat pump system, the system energy consumption of the office building during the cooling and heating period is calculated, and the relationship between the COP and the inlet temperature of the condenser in the summer heat pump unit and the function relationship between the COP and the inlet temperature of the steam generator in winter are obtained. The cost annual value of the heat pump unit and the compound buried pipe type soil source heat pump system under the refrigeration and heat production conditions is used as the index to analyze the economy of the compound pipe type soil source heat pump system under the different load ratio. When the load ratio of the vertical pipe heat exchanger is increased gradually, the annual value of the system cost is basically presented by the COP.. The rising trend is lower than the annual cost of the soil source heat pump system of the independent vertical buried pipe heat exchanger. The definition of the economic value of the heat exchange is put forward to determine whether the burden of the horizontal pipe heat exchanger to replace the vertical buried pipe heat exchanger under the requirement of heat exchange is preliminary. In order to reduce the calculation time of the numerical heat transfer, the heat exchange performance of the heat exchanger is evaluated by the method of independent heat transfer calculation of horizontal and vertical pipe heat exchangers, and the results of the combined heat transfer calculation and the independent heat transfer calculation are compared. Under the load ratio of the building load and the load ratio of horizontal and vertical buried pipes, the independent heat transfer calculation results have little difference with the combined heat transfer calculation results, which can be seen as the independent heat transfer calculation which has little influence on the heat exchange results. Two kinds of composite buried pipe type soil source heat pump system are put forward to set up the ground water pump. With the hydraulic calculation and the hydraulic analysis software of the annular pipe network, the two schemes are used to obtain the loop flow of the buried pipe heat exchangers under the actual parameters of the pump, and the scheme of the buried side water pump for the compound buried pipe type soil source heat pump system is obtained, which is used for the soil source heat of the composite buried pipe. A new idea is provided for the optimization of the hydraulic conditions of the buried pipe heat exchanger in the pump system. Through the measurement of the independent buried pipe heat exchanger, the correctness of the independent heat transfer calculation model of the horizontal and vertical buried pipes is verified respectively. The calculation results of the vertical heat transfer and the combined heat transfer calculation show that the calculated results of the independent heat transfer are quite different from the measured results in the laboratory test conditions, and the results of the combined heat transfer calculation are more accurate. Therefore, the method of replacing the combined heat transfer calculation by the independent heat transfer calculation must be made under the matching condition of the load characteristic and the load ratio. Use.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU83

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張有天;介紹聯(lián)邦德國幾個(gè)埋管工程的設(shè)計(jì)與計(jì)算[J];水力發(fā)電;1986年10期

2 李新國,陳志豪,趙軍,李麗新,馬一太;樁埋管與井埋管實(shí)驗(yàn)與數(shù)值模擬[J];天津大學(xué)學(xué)報(bào);2005年08期

3 於仲義;陳焰華;胡平放;;基于滲流型傳熱機(jī)制的地埋管換熱特性研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S2期

4 祝健;廖國慶;;基于有限元法的垂直地埋管換熱器傳熱研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年12期

5 林蕓;趙強(qiáng);方肇洪;;水平螺旋地埋管地源熱泵的研究[J];暖通空調(diào);2010年04期

6 石磊;高鵬;耿宴;張兆清;劉玉旺;;濟(jì)寧某樁埋管項(xiàng)目工程分析[J];制冷與空調(diào);2010年03期

7 陳勝朋;沈意成;陳振乾;張輝;;基于耦合法的地埋管換熱器設(shè)計(jì)軟件的研發(fā)[J];暖通空調(diào);2011年03期

8 陳杰;宋漢周;霍吉祥;;滲流影響下地埋管鋪設(shè)方式的改進(jìn)及其數(shù)值分析[J];勘察科學(xué)技術(shù);2011年05期

9 冉偉彥;;地埋管換熱孔傳熱系數(shù)及設(shè)計(jì)應(yīng)用[J];供熱制冷;2012年01期

10 俞介剛;水電站高壓埋管設(shè)計(jì)的幾個(gè)問題及其改進(jìn)措施[J];水利學(xué)報(bào);1985年02期

相關(guān)會議論文 前10條

1 孫亭;刁乃仁;肖洪海;羅蘇瑜;;水平地埋管換熱器的傳熱性能研究[A];中國制冷學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年

2 杜次元;陳友明;;豎直埋管有限長線熱源的改進(jìn)模型[A];全國暖通空調(diào)制冷2010年學(xué)術(shù)年會論文集[C];2010年

3 於仲義;陳焰華;胡平放;;基于導(dǎo)熱型傳熱機(jī)制的地埋管換熱特性研究[A];建筑電氣設(shè)計(jì)與研究——湖北省/武漢市建筑電氣專業(yè)委員會二○○九年年會論文集[C];2009年

4 於仲義;陳焰華;胡平放;;基于巖土體蓄能平衡的垂直地埋管換熱器設(shè)計(jì)方法[A];建筑電氣設(shè)計(jì)與研究——湖北省/武漢市建筑電氣專業(yè)委員會二○○九年年會論文集[C];2009年

5 於仲義;陳焰華;胡平放;徐玉黨;袁旭東;;基于換熱能效度的豎直地埋管埋設(shè)深度設(shè)計(jì)[A];建筑電氣設(shè)計(jì)與研究——湖北省/武漢市建筑電氣專業(yè)委員會二○○九年年會論文集[C];2009年

6 於仲義;陳焰華;胡平放;;基于滲流型傳熱機(jī)制的地埋管換熱特性研究[A];建筑電氣設(shè)計(jì)與研究——湖北省/武漢市建筑電氣專業(yè)委員會二○○九年年會論文集[C];2009年

7 於仲義;陳焰華;胡平放;;分層型土壤地埋管換熱特性研究[A];建筑電氣設(shè)計(jì)與研究——湖北省/武漢市建筑電氣專業(yè)委員會二○○九年年會論文集[C];2009年

8 於仲義;胡平放;胡磊;袁旭東;;垂直U型地埋管換熱器傳熱能效特性實(shí)驗(yàn)研究[A];建筑電氣設(shè)計(jì)與研究——湖北省/武漢市建筑電氣專業(yè)委員會二○○九年年會論文集[C];2009年

9 沈煒華;程洪濤;郭彬;賈彩英;陳九法;;樁埋管換熱器的傳熱性能研究[A];制冷空調(diào)新技術(shù)進(jìn)展——第四屆全國制冷空調(diào)新技術(shù)研討會論文集[C];2006年

10 姚楊;張歡;馬最良;;土壤蓄冷與耦合熱泵集成系統(tǒng)地埋管結(jié)構(gòu)優(yōu)化[A];全國暖通空調(diào)制冷2006年學(xué)術(shù)年會文集[C];2006年

相關(guān)重要報(bào)紙文章 前7條

1 記者 段金平 通訊員 畢文明;國內(nèi)首臺車載淺層地溫能響應(yīng)試驗(yàn)臺交付使用[N];地質(zhì)勘查導(dǎo)報(bào);2009年

2 記者 段金平 通訊員 畢文明;國內(nèi)首臺商業(yè)淺層地溫能響應(yīng)試驗(yàn)臺問世[N];中國國土資源報(bào);2009年

3 王麗艷 周兆順 耿大海;“綠色低碳車站”下月建成[N];青島日報(bào);2010年

4 劉其丕 李曉飛;礦產(chǎn)地質(zhì)研究院埋管式地源熱泵空調(diào)技術(shù)獲專利[N];中國有色金屬報(bào);2005年

5 光山縣中等專業(yè)學(xué)校 張傳忠;菌墻式埋管平菇栽培法[N];河南科技報(bào);2005年

6 董學(xué)成;農(nóng)民兄弟灌溉出行兩方便[N];中國交通報(bào);2006年

7 張峰;國內(nèi)首個(gè)地源熱泵系統(tǒng)實(shí)驗(yàn)基地落戶北京[N];中華建筑報(bào);2010年

相關(guān)博士學(xué)位論文 前10條

1 陳金華;豎直雙U地埋管換熱器分層換熱模型研究[D];重慶大學(xué);2015年

2 鄧鼎興;地埋管地源熱泵水熱耦合模擬與淺層地溫能適宜性評價(jià)[D];中國地質(zhì)大學(xué);2015年

3 杜震宇;黃土高原寒冷地區(qū)地源熱泵單U形地埋管換熱器動(dòng)態(tài)換熱特性的試驗(yàn)與模擬研究[D];太原理工大學(xué);2014年

4 於仲義;土壤源熱泵垂直地埋管換熱器傳熱特性研究[D];華中科技大學(xué);2008年

5 徐堅(jiān);地源熱泵U型埋管換熱器的變周期模型研究[D];浙江大學(xué);2010年

6 楊偉;U型豎直地埋管換熱器熱響應(yīng)模型及其算法研究[D];湖南大學(xué);2010年

7 劉卓棟;地源熱泵地埋管隨機(jī)傳熱與可靠性理論研究[D];武漢理工大學(xué);2010年

8 雷海燕;地埋管相變回填材料的理論分析與實(shí)驗(yàn)研究[D];天津大學(xué);2011年

9 白天;嚴(yán)寒地區(qū)土壤源熱泵系統(tǒng)地埋管運(yùn)行特性研究[D];哈爾濱工業(yè)大學(xué);2010年

10 范蕊;土壤蓄冷與熱泵集成系統(tǒng)地埋管熱滲耦合理論與實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 張凱;減緩地下冷/熱量累積效應(yīng)的集群地埋管分區(qū)運(yùn)行方法研究[D];山東建筑大學(xué);2015年

2 馬騰騰;集群豎埋管地?zé)釗Q熱器傳熱簡化分析方法研究[D];山東建筑大學(xué);2015年

3 祁英;地埋管直接供冷系統(tǒng)供冷特性研究[D];山東建筑大學(xué);2015年

4 馮俊杰;基于水熱式融雪技術(shù)橋面鋪裝溫度場及力學(xué)研究[D];長安大學(xué);2015年

5 張海云;基于土壤熱平衡的地源熱泵系統(tǒng)分析[D];南京師范大學(xué);2015年

6 汪仲亮;地源熱泵地埋管研究及其經(jīng)濟(jì)性分析[D];南京師范大學(xué);2015年

7 劉超;U型地埋管換熱器換熱性能模擬及試驗(yàn)研究[D];西南科技大學(xué);2015年

8 侯儒林;不同埋管形式的地理管換熱試驗(yàn)及數(shù)值模擬研究[D];南京大學(xué);2015年

9 陳慶亞;埋管抽采條件下采空區(qū)“三帶”分布規(guī)律研究[D];華北理工大學(xué);2015年

10 孫中慧;太陽能跨季節(jié)儲熱地埋管換熱器數(shù)值模型適用性研究[D];河北工業(yè)大學(xué);2015年

,

本文編號:2092101

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/2092101.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶55794***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com