建筑圍護結(jié)構(gòu)與暖通空調(diào)能量系統(tǒng)熱力學(xué)基礎(chǔ)研究
本文選題:建筑能量系統(tǒng) + 圍護結(jié)構(gòu); 參考:《湖南大學(xué)》2015年博士論文
【摘要】:能源是人類社會經(jīng)濟發(fā)展的基礎(chǔ),隨著社會的發(fā)展能源問題日益突出。作為能源消耗的重要部門,建筑能源消耗占到了世界一次能源消耗的三分之一左右,建筑節(jié)能勢在必行。研究指出,暖通空調(diào)系統(tǒng)能耗是建筑能耗的重要組成部分,如何有效降低暖通空調(diào)系統(tǒng)能耗對于建筑節(jié)能至關(guān)重要。從能量的本質(zhì)來看,節(jié)能實質(zhì)上是減少對能源可用部分的消耗,即節(jié)(?)。本文是在總結(jié)以往研究的基礎(chǔ)上,提出了以室內(nèi)環(huán)境作為參考環(huán)境的建筑能量系統(tǒng)(?)分析方法,建立建筑圍護結(jié)構(gòu)(?)分析模型,并對其主要影響因素進行了分析,為建筑圍護結(jié)構(gòu)設(shè)計特別是被動式建筑節(jié)能技術(shù)提供理論指導(dǎo);分析了新風(fēng)負荷對暖通空調(diào)系統(tǒng)總體負荷的影響,提出了基于熱電效應(yīng)的主動型新風(fēng)熱回收措施,建立了熱力學(xué)分析模型,并進行了實驗研究;引入現(xiàn)代(?)分析方法,建立暖通空調(diào)系統(tǒng)現(xiàn)代(?)分析模型,并對一辦公建筑的暖通空調(diào)系統(tǒng)進行了分析,對暖通空調(diào)系統(tǒng)進行優(yōu)化分析。主要研究內(nèi)容和成果如下:(1)詳細闡述了(?)分析方法的主要概念、計算方法、(?)效率等,并給出了建筑能量系統(tǒng)(?)分析的常用計算方法;在闡述傳統(tǒng)(?)分析方法局限性的基礎(chǔ)上,引入現(xiàn)代(?)分析方法,并對其概念和計算分析方法進行詳細闡述,為后續(xù)對建筑圍護結(jié)構(gòu)和暖通空調(diào)系能量系統(tǒng)的(?)分析研究闡明了理論基礎(chǔ);(2)建筑能量系統(tǒng)(?)分析常采用室外環(huán)境作為建筑能量系統(tǒng)(?)分析的參考環(huán)境,此方法具有一定的局限性。本文分析了濕空氣(?)值隨地點和時間的變化,并以典型空氣加熱過程為例,分析了不同時間地點對(?)分析結(jié)果的影響。結(jié)果指出,以室外環(huán)境為(?)分析的參考環(huán)境時,室外環(huán)境隨時間、地點等參數(shù)的變化對(?)分析的結(jié)果影響較大,使得(?)分析的結(jié)果不具有通用性。分析了建筑能量系統(tǒng)能量流動過程,可以將室內(nèi)環(huán)境看成建筑能量系統(tǒng)各種能量轉(zhuǎn)化的最終狀態(tài),考慮到室內(nèi)環(huán)境的相對穩(wěn)定性,提出以室內(nèi)環(huán)境作為建筑能量系統(tǒng)(?)分析的參考環(huán)境。(3)結(jié)合能量分析和(?)分析方法,建立建筑圍護結(jié)構(gòu)熱力學(xué)分析模型,并以位于長沙的一辦公建筑為例,對其圍護結(jié)構(gòu)熱力學(xué)性能進行了分析,然后通過改變主要建筑圍護結(jié)構(gòu)參數(shù),分別研究了外墻傳熱系數(shù)、外窗傳熱系數(shù)和窗墻比的改變對參考建筑熱力學(xué)性能的影響?紤]到我國建筑氣候分區(qū),將參考建筑設(shè)定于五個建筑氣候分區(qū)的典型城市,以考察不同氣候?qū)ㄖ䶮崃W(xué)性能的影響。結(jié)果指出,建筑冷熱負荷的(?)值較低,只需要品位較低的能源就能滿足建筑負荷需求,實際選擇暖通空調(diào)系統(tǒng)時,需要考慮到能源品質(zhì)的匹配,盡量引入低品位能源,提高能源利用效率。建筑圍護結(jié)構(gòu)參數(shù)對建筑熱力學(xué)性能影響較大,應(yīng)綜合考慮建筑全年冷熱負荷,合理確定建筑圍護結(jié)構(gòu)參數(shù)。對于建筑負荷各組成部分而言,在其進入室內(nèi)形成冷熱負荷的過程中,存在較大的(?)損失,本文揭示了建筑各種熱擾在形成負荷過程中的(?)損失,進而從(?)分析角度說明了建筑熱擾的可利用性。其中,太陽輻射(?)損失較大,可加以合理利用。并且,對建筑冷負荷進行分析,特別是進行(?)分析時,不能忽略潛熱冷負荷對建筑全年冷負荷(?)值的影響,這點對于位于夏季潮濕地區(qū)的建筑尤為重要。建筑圍護結(jié)構(gòu)熱力學(xué)分析為建筑設(shè)計尤其是被動式建筑技術(shù)及建筑能量系統(tǒng)熱力學(xué)分析提供了理論指導(dǎo)。(4)本文在分析不同氣候區(qū)域典型城市參考建筑的新風(fēng)負荷的基礎(chǔ)上,闡明了新風(fēng)負荷對建筑暖通空調(diào)系統(tǒng)總負荷的重要影響。因此,為了降低新風(fēng)負荷,本文提出了基于熱電效應(yīng)的適用于小型空調(diào)系統(tǒng)的新風(fēng)熱回收措施,建立了熱力學(xué)分析模型,并進行了實驗研究。結(jié)果指出,整個新風(fēng)機的工作過程中,新風(fēng)機組滿足新風(fēng)處理要求,將新風(fēng)處理到室內(nèi)實際狀態(tài)。從能量分析角度而言,其工作效率較高,但是,通過(?)分析發(fā)現(xiàn),其(?)效率較低,夏季模型(?)效率最高為11.04%,冬季模型最高(?)效率為5.06%。(?)損失最大的部位為熱電芯片的內(nèi)部能量轉(zhuǎn)換,有必要引入其他能源提高熱電新風(fēng)機熱電芯片的效率,改進熱電新風(fēng)機的性能;熱電新風(fēng)機與空氣之間的熱交換過程,尤其是熱電芯片熱端的換熱器在熱交換的過程中(?)損失較大,其傳熱效率可進一步改善。此外,從熱電新風(fēng)機工作適宜工作的溫度來看,其適合于溫和地區(qū)的新風(fēng)熱回收。(5)引入現(xiàn)代(?)分析方法,建立暖通空調(diào)系統(tǒng)(?)分析通用模型,并提出空調(diào)系統(tǒng)與負荷的匹配度的概念,來整體衡量空調(diào)系統(tǒng)能耗與負荷之間的能量本質(zhì)上的匹配程度,在此基礎(chǔ)上對典型辦公建筑空調(diào)系統(tǒng)進行了分析。結(jié)果指出,此辦公建筑空調(diào)系統(tǒng)與負荷的匹配度較差,分別為采暖季=10.75,空調(diào)季=54.15,應(yīng)盡量引入低品位冷熱源,減少高品位能源的消耗,提升系統(tǒng)匹配度。從傳統(tǒng)的(?)分析角度看,系統(tǒng)整體(?)效率為采暖季6.81%,空調(diào)季3.19%,系統(tǒng)最大(?)損失出現(xiàn)在風(fēng)冷熱泵機組,采暖季為15.11MWh,空調(diào)季為129.23MWh,應(yīng)重點對風(fēng)冷熱泵機組進行優(yōu)化,來提升系統(tǒng)整體效率。而現(xiàn)代(?)分析指出,系統(tǒng)的最大(?)損失亦出現(xiàn)在風(fēng)冷熱泵機組,(?)損耗的大部分是不可避免(?)損耗,其可避免(?)損耗為采暖季5.52MWh,空調(diào)季37.76MWh。并且,對于可避免(?)損耗,亦應(yīng)區(qū)分內(nèi)部與外部可避免(?)損耗來確定造成(?)損耗的原因。對于參考建筑暖通空調(diào)系統(tǒng)而言,其外部可避免(?)損耗大于內(nèi)部可避免(?)損耗,應(yīng)同時關(guān)注風(fēng)冷熱泵和其他部件造成的(?)損耗,提升系統(tǒng)整體能量利用效率。系統(tǒng)采暖季與空調(diào)季的修正(?)效率分別為20.47%和13.80%,系統(tǒng)修正(?)效率真實體現(xiàn)了系統(tǒng)對能量的利用效率。
[Abstract]:Energy is the basis of human social and economic development, with the development of energy problems with the development of society. As an important sector of energy consumption, building energy consumption accounts for about 1/3 of the world's energy consumption, and building energy conservation is imperative. It is pointed out that energy consumption of HVAC system is an important part of building energy consumption, such as How to effectively reduce the energy consumption of HVAC system is very important for building energy conservation. From the essence of energy, energy saving is essentially reducing the consumption of energy available to energy, that is, the section (?). On the basis of summarizing the previous research, this paper puts forward the building energy system (?) analysis method based on the indoor environment as a reference environment, and establishes the building enclosure. The analysis model of protecting structure (?) and its main influencing factors are analyzed. The theoretical guidance is provided for the design of building enclosure structure, especially the energy-saving technology of passive building. The influence of new wind load on the overall load of HVAC system is analyzed. A new method of active new wind heat recovery based on thermoelectric effect is put forward, and the thermodynamic analysis is established. A modern (?) analysis method is introduced to establish the modern (?) analysis model of HVAC system, and the HVAC system is analyzed and the HVAC system is optimized. The main research contents and results are as follows: (1) the main concepts and calculation methods of the analysis method are described in detail. On the basis of the limitations of the traditional (?) analysis method, the modern (?) analysis method is introduced, and its concept and calculation analysis methods are expounded in detail, and the analysis and Research on the building enclosure structure and the energy system of HVAC system are clarified in the future. Theoretical basis; (2) the construction energy system (?) analysis often uses the outdoor environment as the reference environment for the analysis of the building energy system. This method has some limitations. This paper analyses the change of the wet air (?) value with the place and time, and takes the typical air heating process as an example to analyze the influence of the analysis results at different time and place. The results show that, with the reference environment of outdoor environment as (?) analysis, the changes of outdoor environment parameters such as time and location have great influence on the results of (?) analysis. The results of the analysis are not universal. The energy flow process of the building energy system is analyzed, and the indoor environment can be regarded as the most important energy conversion of the building energy system. In the final state, considering the relative stability of the indoor environment, an indoor environment is proposed as the reference environment for the analysis of the building energy system. (3) the thermodynamic analysis model of the building enclosure structure is established by combining the energy analysis and (?) analysis method, and the thermodynamic performance of its enclosure is analyzed with an example of an office building located in Changsha. Then by changing the parameters of the main building envelope, the influence of the external wall heat transfer coefficient, the heat transfer coefficient of the outer window and the change of the window wall ratio on the thermodynamic performance of the reference building was studied. The reference building was set in the typical cities of five climatic zoning in China to investigate the building thermodynamics of different climate. The results show that the (?) value of the building heat and heat load is low, and only the lower grade energy can meet the demand of the building load. In the actual selection of HVAC system, the matching of energy quality should be taken into consideration, the low grade energy is introduced as far as possible to improve the efficiency of energy utilization. In the process of building the cold and heat load in the interior of the building, there is a great loss in the process of forming the cold and heat load in the interior of the building. It is clear that the thermal disturbance of building is available. Among them, the solar radiation (?) loss is large and can be used reasonably. And the analysis of the building cold load, especially in the analysis, can not ignore the effect of the latent heat cooling load on the annual cold load (?) value of the building. This is especially important for the buildings in the wet area in summer. The thermodynamic analysis provides theoretical guidance for the architectural design, especially the passive building technology and the thermodynamic analysis of the building energy system. (4) on the basis of the analysis of the new wind load of the typical urban reference buildings in different climate regions, this paper clarifies the important influence of the new wind load on the total load of the building HVAC system. In this paper, the new wind heat recovery measures for small air conditioning system based on thermoelectric effect are put forward, and a thermodynamic analysis model is set up, and the experimental study is carried out. The results show that the new wind turbine meets the requirements of the new wind treatment in the working process of the new fan, and the new wind is treated to the actual condition of the indoor air. In terms of degree, its efficiency is high, but through (?) analysis, it is found that its (?) efficiency is low, the maximum efficiency of summer model (?) is 11.04%, the highest (?) efficiency of the winter model is 5.06%. (?) the largest loss part is the internal energy conversion of the thermoelectric chip. It is necessary to introduce other energy to improve the efficiency of thermoelectric chips and improve the new heat and power. The performance of the fan, the heat exchange between the thermoelectric new fan and the air, especially the heat exchanger at the hot end of the thermoelectric chip, has a greater loss in heat exchange, and the heat transfer efficiency can be further improved. In addition, it is suitable for the new wind heat recovery in the mild area from the temperature of the suitable work of the thermoelectric new air blower. (5) the modern (?) The general model of HVAC system is established, and the concept of the matching degree of air conditioning system and load is put forward to measure the essential matching degree of energy between the energy consumption and the load of the air conditioning system. On this basis, the typical office building air conditioning system is analyzed. The results show that the office building air conditioning system is used. In the heating season =10.75 and air conditioning season =54.15, the low grade cold and heat source should be introduced to reduce the consumption of high grade energy and improve the matching degree of the system. From the traditional (?) point of view, the overall system (?) efficiency is 6.81% in the heating season, 3.19% in the air conditioning season, and the maximum (?) loss in the air cooling heat pump unit and the heating season. For 15.11MWh, the air conditioning season is 129.23MWh, the air cooling heat pump unit should be optimized to improve the overall efficiency of the system. And the modern (?) analysis indicates that the maximum (?) loss of the system is also in the air cooled heat pump unit. Most of the loss is inevitable (?) loss, which can avoid (?) loss for heating season 5.52MWh, air conditioning season 37.76MWh. and, For avoidable loss, internal and external avoidable loss should be distinguished to determine the cause of loss. For the reference building HVAC system, the external avoidable (?) loss is greater than the internal avoidable loss, and the losses caused by the air cooling heat pump and other components should be closed at the same time, and the overall energy efficiency of the system is improved. The correction efficiency of system heating season and air-conditioning season is 20.47% and 13.80% respectively, and the system correction efficiency reflects the system's energy utilization efficiency.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TU83;TU111.4
【相似文獻】
相關(guān)期刊論文 前10條
1 龍惟定,范存養(yǎng);高層建筑空調(diào)發(fā)展動態(tài)[J];暖通空調(diào);2001年01期
2 王建華;光伏建筑空調(diào)的穩(wěn)定控制[J];暖通空調(diào);2004年01期
3 白瑋;龍惟定;劉仲英;;上海市民用建筑空調(diào)能源需求與環(huán)境負荷的系統(tǒng)動力學(xué)分析[J];暖通空調(diào);2007年12期
4 韓路磊;;紡織廠空調(diào)與民用建筑空調(diào)的區(qū)別淺析[J];安徽建筑;2010年04期
5 李春來;;《建筑空調(diào)技術(shù)》課程貫穿項目教學(xué)法的探討與實踐[J];學(xué)理論;2010年27期
6 姜鳳華;李坤;劉銓;王曉芳;李海平;李君;張亞平;;臺州市建筑空調(diào)使用現(xiàn)狀調(diào)查分析及對策研究[J];臺州學(xué)院學(xué)報;2012年06期
7 何天祺;;高層建筑空調(diào)的新風(fēng)供應(yīng)問題[J];建筑技術(shù)通訊(暖通空調(diào));1987年04期
8 ;《’97國際高層建筑空調(diào)學(xué)術(shù)會議》通知[J];制冷技術(shù);1997年02期
9 顧安忠;國際高層建筑空調(diào)學(xué)術(shù)會議在上海召開[J];制冷技術(shù);1998年04期
10 ;’2000國際高層建筑空調(diào)學(xué)術(shù)會議第一次通知(對國內(nèi)人士)[J];制冷技術(shù);1999年02期
相關(guān)會議論文 前10條
1 龍惟定;白瑋;;我國民用建筑空調(diào)的發(fā)展前景[A];第4屆中國戶式中央空調(diào)應(yīng)用技術(shù)研討會論文集[C];2005年
2 周為人;;漕河涇開發(fā)區(qū)建筑空調(diào)方案的選擇及應(yīng)用[A];第2屆中國家用/商用中央空調(diào)應(yīng)用技術(shù)研討會論文集[C];2003年
3 鄭遠;;醫(yī)院建筑空調(diào)的特殊性[A];第三屆海峽兩岸土木建筑學(xué)術(shù)研討會論文集[C];2007年
4 方恒和;;建筑空調(diào)的節(jié)能[A];上海市制冷學(xué)會2011年學(xué)術(shù)年會論文集[C];2011年
5 龍惟定;范存養(yǎng);許雷;潘毅群;;上海高層建筑空調(diào)對城市能源與環(huán)境的影響[A];1999年全國空調(diào)新技術(shù)交流會論文集[C];1999年
6 李姣;;論建筑空調(diào)運行質(zhì)量[A];2014年8月建筑科技與管理學(xué)術(shù)交流會論文集[C];2014年
7 顧迎春;高猛;;高層建筑空調(diào)冷、熱源設(shè)備布置新方式的探討[A];全國暖通空調(diào)制冷1998年學(xué)術(shù)年會論文集(2)[C];1998年
8 王正新;肖平;;大型建筑空調(diào)的節(jié)能控制系統(tǒng)[A];2005年山東省制冷空調(diào)學(xué)術(shù)年會論文集[C];2005年
9 陳紅兵;魏平;王鋼;;大型公共建筑空調(diào)監(jiān)控系統(tǒng)的設(shè)計與優(yōu)化運行[A];第八屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2010年
10 楊婷;;高層建筑空調(diào)設(shè)計綜述[A];全國暖通空調(diào)制冷2008年學(xué)術(shù)年會資料集[C];2008年
相關(guān)重要報紙文章 前10條
1 建文;國務(wù)院下發(fā)通知要求嚴格執(zhí)行公共建筑空調(diào)溫度控制標準[N];中華建筑報;2007年
2 劉豐;福建將大力發(fā)展綠色建筑[N];建筑時報;2014年
3 陳哲;26℃背后的節(jié)能之道[N];中華建筑報;2007年
4 記者 劉月月;北京明確綠色建筑十項重點任務(wù)[N];中國建設(shè)報;2013年
5 廣東建設(shè)報記者 談健;鄭愛軍:推行綠色建筑關(guān)鍵在大業(yè)主[N];廣東建設(shè)報;2011年
6 南方日報記者 謝慶!嵙(xí)生 吳曉彭;新樓能耗比老宅高10倍多[N];南方日報;2010年
7 南方日報記者 謝慶裕;空調(diào)負荷將耗盡10個三峽電站[N];南方日報;2011年
8 馮海波邋通訊員 高凌波;標志性建筑將更多“廣東建造”[N];廣東科技報;2007年
9 本報記者 于忠寧;九成建筑不節(jié)能的警示[N];工人日報;2007年
10 ;深圳市綠色建筑促進辦法[N];深圳特區(qū)報;2013年
相關(guān)博士學(xué)位論文 前5條
1 李洋;建筑能量系統(tǒng)熱力學(xué)分析與低?優(yōu)化研究[D];西安建筑科技大學(xué);2015年
2 韓天鶴;建筑圍護結(jié)構(gòu)與暖通空調(diào)能量系統(tǒng)熱力學(xué)基礎(chǔ)研究[D];湖南大學(xué);2015年
3 周智勇;建筑能耗定額的理論與實證研究[D];重慶大學(xué);2010年
4 龍恩深;建筑能耗基因理論研究[D];重慶大學(xué);2005年
5 楊小山;室外微氣候?qū)ㄖ照{(diào)能耗影響的模擬方法研究[D];華南理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 楊光;華工東二二樓辦公室節(jié)能實踐與節(jié)能潛力研究[D];華南理工大學(xué);2015年
2 王晨;LOW-E玻璃在西安地區(qū)建筑外圍護結(jié)構(gòu)的適用性研究[D];西安建筑科技大學(xué);2015年
3 褚吉平;重慶市某公共建筑空調(diào)能耗模擬分析及評價[D];重慶大學(xué);2015年
4 李俊橙;成都大型公共建筑空調(diào)系統(tǒng)節(jié)能診斷與分析[D];重慶大學(xué);2015年
5 沈帆;窗戶特性對建筑空調(diào)負荷的影響及經(jīng)濟性分析[D];華中科技大學(xué);2014年
6 過e,
本文編號:1908000
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1908000.html