曲桿單元鉸接單層網(wǎng)殼彈塑性后屈曲分析
發(fā)布時(shí)間:2018-05-13 01:40
本文選題:曲桿單元 + 切線剛度矩陣; 參考:《建筑科學(xué)與工程學(xué)報(bào)》2016年06期
【摘要】:基于曲桿單元應(yīng)力-弦長(zhǎng)關(guān)系和矩陣微分理論,推導(dǎo)出曲桿單元在彈性與彈塑性狀態(tài)下的切線剛度矩陣精確公式。研究構(gòu)件取理想彈塑性材料,結(jié)構(gòu)支座取固定鉸支座和可動(dòng)鉸支座2種約束情況,考慮構(gòu)件具有初彎曲,采用曲桿單元切線剛度矩陣和廣義位移控制法,取結(jié)構(gòu)自重為參考荷載,對(duì)節(jié)點(diǎn)鉸接的K8大跨單層網(wǎng)殼結(jié)構(gòu)進(jìn)行彈塑性后屈曲分析。結(jié)果表明:曲桿單元切線剛度矩陣公式精確性很高,可有效用于大型鉸接單層網(wǎng)殼彈塑性后屈曲分析。
[Abstract]:Based on the stress-chord length relation of curved bar element and the matrix differential theory, the exact formula of tangent stiffness matrix of curved bar element under elastic and elastic-plastic state is derived. In this paper, ideal elastic-plastic material is used for structural support and fixed hinge support and movable hinge support are used for structural support. Considering the initial bending of the member, tangent stiffness matrix of curved bar element and generalized displacement control method are adopted. Taking the deadweight of the structure as the reference load, the elastic-plastic post-buckling analysis of the single-layer latticed shell structure with long span K8 joints is carried out. The results show that the tangent stiffness matrix formula of curved bar element is highly accurate and can be effectively applied to the elastoplastic post-buckling analysis of large hinged single-layer latticed shells.
【作者單位】: 廣州大學(xué)土木工程學(xué)院;
【基金】:廣州市科技計(jì)劃項(xiàng)目(201604020071)
【分類號(hào)】:TU399
,
本文編號(hào):1881108
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1881108.html
最近更新
教材專著