多層空腔樓蓋減震體系及隨機(jī)動(dòng)力分析
本文選題:滾動(dòng)調(diào)諧質(zhì)量阻尼器(TRMD) + 空腔樓板 ; 參考:《武漢理工大學(xué)》2015年碩士論文
【摘要】:隨著經(jīng)濟(jì)社會(huì)的不斷發(fā)展,建筑結(jié)構(gòu)形式及使用要求等均向大空間、大跨度形式快速發(fā)展。尤其是高層建筑結(jié)構(gòu)抗震問題,一直是土木工程設(shè)計(jì)中十分重要的環(huán)節(jié)。建筑結(jié)構(gòu)抗震方法通常是以“硬抗”為主要途徑,即增大結(jié)構(gòu)剛度、結(jié)構(gòu)質(zhì)量以及截面尺寸等方法,這樣不僅增加建筑成本,而且減震效果有待商榷。結(jié)構(gòu)振動(dòng)控制,尤其是被動(dòng)控制作為一種新型減震手段,以其相對(duì)完善的理論基礎(chǔ)和良好的控制效果,越來越多的應(yīng)用于高層建筑結(jié)構(gòu)抗震中。本文提出了一種基于空腔樓蓋的新型減震裝置——滾動(dòng)型調(diào)諧質(zhì)量阻尼器(TRMD)。這種耗能裝置由球形振子和圓弧軌道組成,通過預(yù)先在雙向密肋空腔樓蓋的空腔構(gòu)件中設(shè)置一個(gè)或多個(gè)TRMD,主結(jié)構(gòu)在地震作用下產(chǎn)生振動(dòng)并帶動(dòng)TRMD運(yùn)動(dòng),從而利用振子與軌道間滾動(dòng)摩擦進(jìn)行耗能減震;同時(shí)能夠充分利用空腔樓蓋內(nèi)部空間協(xié)同發(fā)揮作用。分別基于振子轉(zhuǎn)角位移?無小量假定和小量假定,運(yùn)用拉格朗日運(yùn)動(dòng)方程推導(dǎo)了單層和多層帶TRMD耗能體系的運(yùn)動(dòng)微分方程。運(yùn)用數(shù)值模擬進(jìn)行減震分析,計(jì)算結(jié)果表明:在不同地震激勵(lì)下,TRMD能有效抑制結(jié)構(gòu)峰值位移及能量幅值;同時(shí),通過對(duì)比得出振子轉(zhuǎn)角位移小量假定的適用范圍為?小于1 rad;分析了TRMD的減震效果與地震波加速度幅值間關(guān)系。對(duì)于多層帶TRMD耗能體系,本文基于小量假定前提,具體從TRMD底層布置、頂層布置、每層均布、隔層布置和頂三層布置等五種布置方案進(jìn)行了數(shù)值分析。結(jié)果表明:頂層布置效果最佳,底層布置效果最差,且在不同地震激勵(lì)下的減震效果區(qū)別很大;赥RMD頂層布置,推廣到n個(gè)相同參數(shù)TRMD的減震分析,計(jì)算結(jié)果表明n值越大,TRMD峰值位移越小,但是會(huì)降低減震效果。由于地震動(dòng)具有明顯的的隨機(jī)特性,有必要對(duì)該新型減震系統(tǒng)進(jìn)行隨機(jī)動(dòng)力分析;谄椒(wěn)白噪聲和Kanai-Tajimi譜模型,分別運(yùn)用Monte-Carlo模擬和統(tǒng)計(jì)線性化方法進(jìn)行了單層和多層帶TRMD受控體系的隨機(jī)動(dòng)力分析。數(shù)值結(jié)果表明:TRMD不僅能有效抑制結(jié)構(gòu)穩(wěn)態(tài)位移響應(yīng)均方差,而且大大縮短結(jié)構(gòu)達(dá)到穩(wěn)態(tài)響應(yīng)的時(shí)間。同時(shí),對(duì)比結(jié)果表明在計(jì)算精度一定前提下,二者計(jì)算結(jié)果十分接近。由于統(tǒng)計(jì)線性化方法能夠顯著提高隨機(jī)動(dòng)力分析的計(jì)算效率,因此,為進(jìn)一步進(jìn)行TRMD參數(shù)優(yōu)化打下基礎(chǔ)。最后,利用統(tǒng)計(jì)線性化方法的解析積分解驗(yàn)證數(shù)值積分解的正確性。
[Abstract]:With the development of economy and society, the form of building structure and the requirement of use develop rapidly in large space and long span. Especially the earthquake-resistant problem of high-rise building structure has been a very important link in civil engineering design. The main way of aseismic method of building structure is "hard resistance", that is, to increase the stiffness, mass and section size of the structure, which not only increases the cost of building, but also the effect of seismic absorption needs to be discussed. Structural vibration control, especially passive control, as a new damping method, is more and more widely used in the seismic resistance of high-rise building with its relatively perfect theoretical foundation and good control effect. In this paper, a new type of shock absorber based on cavity floor is presented, which is a rolling tuned mass damper (TRMD). The energy dissipation device consists of a spherical vibrator and a circular track. By installing one or more TRMDs in the cavity member of the bidirectional multi-ribbed cavity floor in advance, the main structure vibrates under earthquake and drives the TRMD motion. Thus the energy dissipation can be reduced by rolling friction between the vibrator and the track, and the inner space of the cavity floor can be used to play a synergistic role at the same time. Based on the angular displacement of the vibrator, respectively? The differential equations of motion of single-layer and multi-layer TRMD energy dissipation systems are derived by using Lagrangian equations of motion. The results show that TRMD can effectively suppress the peak displacement and energy amplitude of the structure under different earthquake excitations, and at the same time, through the comparison, it is concluded that the suitable range of the small displacement assumption of the vibrator rotation angle is? Less than 1 rad. the relationship between the seismic wave acceleration amplitude and the seismic damping effect of TRMD is analyzed. For the multi-layer TRMD energy dissipation system, based on the premise of small amount of assumptions, five kinds of layout schemes, such as TRMD bottom layout, top layer layout, distribution of each layer, partition layer arrangement and top three layer arrangement, are numerically analyzed in this paper. The results show that the top layer arrangement is the best, and the bottom layer arrangement is the worst, and the seismic absorption effect under different earthquake excitation is very different. Based on the top layer arrangement of TRMD, it is extended to the seismic analysis of n TRMD with the same parameters. The calculated results show that the larger the value of n is, the smaller the peak displacement of TRMD is, but the effect of damping will be reduced. Because of the obvious random characteristics of ground motion, it is necessary to carry out random dynamic analysis of the new damping system. Based on the stationary white noise and Kanai-Tajimi spectral model, the stochastic dynamic analysis of single-layer and multi-layer TRMD controlled systems is carried out by using Monte-Carlo simulation and statistical linearization method, respectively. The numerical results show that the mean square deviation of the steady-state displacement response of the structure can be effectively suppressed by the weight TRMD, and the time of the steady-state response of the structure can be greatly shortened. At the same time, the comparison results show that the two results are very close to each other on the premise of certain accuracy. As the statistical linearization method can significantly improve the computational efficiency of stochastic dynamic analysis, it lays a foundation for further optimization of TRMD parameters. Finally, the analytical integral solution of the statistical linearization method is used to verify the correctness of the numerical integral solution.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU973.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張自立;陳建兵;李杰;;圓球減振裝置對(duì)風(fēng)力發(fā)電高塔的振動(dòng)控制研究[J];地震工程與工程振動(dòng);2012年03期
2 張小龍;東亞斌;張曉鐘;李雨田;;新型滾珠式多向動(dòng)力吸振器的理論研究[J];振動(dòng)與沖擊;2012年01期
3 張小龍;李雨田;東亞斌;張曉鐘;;新型滾子動(dòng)力吸振器的分析與設(shè)計(jì)[J];重型機(jī)械;2010年05期
4 李鴻晶;孫廣俊;任永亮;;平穩(wěn)地震地面運(yùn)動(dòng)改進(jìn)金井清譜的相關(guān)函數(shù)模型[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2007年03期
5 王均剛;馬汝建;趙東;林近山;;TMD振動(dòng)控制結(jié)構(gòu)的發(fā)展及應(yīng)用[J];濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
6 傅禮銘;;現(xiàn)澆混凝土筒芯空心樓蓋經(jīng)濟(jì)分析[J];建筑結(jié)構(gòu);2006年03期
7 李春祥;多重調(diào)諧質(zhì)量阻尼器控制單層非對(duì)稱結(jié)構(gòu)扭轉(zhuǎn)振動(dòng)的設(shè)計(jì)參數(shù)[J];振動(dòng)與沖擊;2005年01期
8 李春祥,翟文杰;改進(jìn)的Clough-Penzien地震地面運(yùn)動(dòng)模型[J];地震工程與工程振動(dòng);2003年05期
9 李春祥,熊學(xué)玉;用于結(jié)構(gòu)振動(dòng)控制的MTMD設(shè)計(jì)模型及最優(yōu)設(shè)計(jì)參數(shù)[J];四川建筑科學(xué)研究;2003年03期
10 李春祥,劉艷霞,王肇民;質(zhì)量阻尼器的發(fā)展[J];力學(xué)進(jìn)展;2003年02期
相關(guān)碩士學(xué)位論文 前1條
1 朱麗華;隨機(jī)地震激勵(lì)下結(jié)構(gòu)響應(yīng)分析[D];西安建筑科技大學(xué);2005年
,本文編號(hào):1845778
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1845778.html