柱截面形狀對板柱節(jié)點受沖切性能影響的試驗研究
本文選題:板柱節(jié)點 + 柱截面形狀。 參考:《湖南大學》2015年碩士論文
【摘要】:鋼筋混凝土板柱結構是一種常用的結構形式,它具有施工支模簡單,結構本身高度較小,可以減少建筑物的層高,從而降低建筑物的造價等優(yōu)點,多用于車庫、住宅等建筑,在歐美等國得到廣泛的應用。為滿足使用者對房屋結構的建筑功能、結構布置等方面的不同需求,實際結構中可能出現平板由矩形或者圓形柱頭支撐的情況,另一方面,板柱-剪力墻結構中的平板則可能由短肢剪力墻支撐。目前,國內外學者對于矩形柱、圓柱板柱節(jié)點受沖切性能的試驗研究相對較少,而縱向配筋率對板柱節(jié)點受沖切性能的影響也眾說紛紜,各國規(guī)范條文的受沖切承載力計算公式大多建立在半理論半經驗的基礎上,而并非基于失效機理層面的理論模型,進一步完善對柱截面形狀、縱向配筋率對板柱節(jié)點受沖切性能影響的認識是非常有必要的。為研究柱截面形狀及縱向配筋率對板柱節(jié)點受沖切性能的影響,本文在總結前人研究的基礎上,完成了10個軸心荷載作用下的板柱節(jié)點沖切破壞試驗研究。試件尺寸為2550mm×2550mm×180mm。試驗變量包括柱截面形狀和縱向配筋率:五種柱截面形狀(包括圓形、六邊形、方柱和矩形截面)、縱向配筋率取1.28%、0.86%兩種,單層雙向配置。通過試驗獲取了荷載-中心撓度曲線、破壞形態(tài)、局部應變分布和板內斜裂縫發(fā)展過程數據等信息。結合試驗結果和歷史試驗數據進行分析,主要結果表明:提高縱筋配筋率較為明顯的影響板柱節(jié)點試件的變形性能,能在一定程度上提高板柱節(jié)點受沖切承載力,試件在最大彎矩部位縱筋屈服后發(fā)生沖切破壞;加載短柱長寬比在1到4之間變化時,對沖切承載力無明顯影響,柱截面形狀對受沖切承載力的不利影響的根本原因是沖切截面計算周長與板截面有效高度之比增大導致的應力集中現象;現行GB50010-2010規(guī)范的沖切錐面傾角、圓柱板柱節(jié)點的受沖切承載力計算方法存在不合理之處;板內斜裂縫首先在靠近柱邊的中上部區(qū)域形成,然后向上下發(fā)展發(fā)生沖切破壞,沖切破壞過程并非呈理想塑性。綜合比較國際上廣泛應用的四種規(guī)范可以認為,歐洲規(guī)范和歐洲模式規(guī)范能較好的反映縱筋配筋率和柱截面對板柱節(jié)點受沖切破壞承載力的影響。本文基于雙剪強度準則和剛塑性理論推導了板柱節(jié)點受沖切破壞承載力計算的理論公式,公式計算值與本文試驗值吻合良好,將該理論公式與收集到的歷史數據對比,也吻合良好。
[Abstract]:Reinforced concrete slab-column structure is a kind of common structural form. It has the advantages of simple construction formwork, small height of structure itself, which can reduce the floor height of buildings and thus reduce the cost of buildings, etc. It is often used in buildings such as garages, residential buildings, etc. In Europe and the United States and other countries have been widely used. In order to meet the different needs of the users on the building function and layout of the building structure, the actual structure may be supported by rectangular or circular columns, on the other hand, The plate in the slab-column-shear wall structure may be supported by the short-leg shear wall. At present, there are few experimental studies on punching behavior of rectangular column and cylindrical plate-column joints, and there are different opinions about the influence of longitudinal reinforcement ratio on punching shear performance of plate-column joints. Most of the calculation formulas of punching shear capacity of national specifications are based on semi-theoretical and semi-empirical, but not on the theoretical model of failure mechanism to further improve the cross-section shape of columns. It is necessary to understand the influence of longitudinal reinforcement ratio on punching behavior of plate-column joints. In order to study the influence of column section shape and longitudinal reinforcement ratio on punching shear behavior of slab-column joints, the experimental research of punching shear failure of slab-column joints under 10 axial loads has been completed on the basis of summarizing previous studies. The size of the specimen is 2550mm 脳 2550mm 脳 180mm. The test variables include column section shape and longitudinal reinforcement ratio: five column cross-section shapes (including circular, hexagonal, square column and rectangular section), longitudinal reinforcement ratio of 1.28% 0.86%, single-layer two-way configuration. The information of load-center deflection curve, failure pattern, local strain distribution and the development process of inclined cracks in the plate were obtained by experiments. Combined with the test results and the historical test data, the main results show that increasing the reinforcement ratio of longitudinal reinforcement significantly affects the deformation performance of the slab-column joints, and can improve the punching capacity of the slab-column joints to a certain extent. When the ratio of length to width of the short column changes from 1 to 4, the shear capacity is not affected obviously. The fundamental cause of the negative effect of column section shape on the punching capacity is the stress concentration phenomenon caused by the increase of the ratio between the calculated circumference of the punching section and the effective height of the plate section. The calculation method of punching capacity of cylindrical plate-column joints is unreasonable, and the inclined cracks in the plate are formed in the upper and middle parts near the column edge, then the punching failure occurs up and down, and the process of punching failure is not ideal plastic. Compared with the four codes widely used in the world, it can be concluded that the European Code and the European Model Code can better reflect the influence of the reinforcement ratio of longitudinal reinforcement and column section on the punching shear failure capacity of plate-column joints. Based on the double shear strength criterion and rigid-plastic theory, the theoretical formula for calculating the punching failure capacity of plate-column joints is derived in this paper. The calculated value of the formula is in good agreement with the experimental value in this paper. The theoretical formula is compared with the historical data collected. It also fits well.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TU375
【參考文獻】
相關期刊論文 前10條
1 易偉建;楊開;;鋼筋混凝土板受沖切承載力可靠度分析[J];建筑結構;2014年14期
2 周朝陽,張賽賽,劉澍;混凝土板及基礎抗沖切設計計算截面的取法[J];中南大學學報(自然科學版);2005年01期
3 魏雪英,楊政,于澍,廖紅建,邵珠山;用統一強度理論求解軸對稱混凝土板的沖切強度[J];工程力學;2002年05期
4 連曉莊,鄒銀生,何放龍,周朝陽;配雙鉤筋板柱連接的抗沖切性能試驗研究[J];湖南大學學報(自然科學版);2000年05期
5 舒兆發(fā);配置受沖切錨栓的混凝土板柱連接的試驗研究[J];建筑結構學報;1999年01期
6 周朝陽;配置抗沖切鋼筋的混凝土板柱連接的破壞形態(tài)與承載力分析[J];建筑結構學報;1997年06期
7 周軍,呂西林;混凝土平板結構中柱節(jié)點在剪力與不平衡彎矩共同作用下的分析研究[J];建筑結構學報;1997年05期
8 嚴宗達;用雙剪強度理論解混凝土板沖切的軸對稱問題[J];工程力學;1996年01期
9 劉廣義,喻秋,,楊振東;浮石混凝土板抗沖切性能試驗研究[J];哈爾濱建筑工程學院學報;1994年03期
10 郭曉林,劉廣義,曹聲遠,喻秋;鋼筋混凝土板沖切破壞機理的試驗研究及沖切承載力計算[J];哈爾濱建筑工程學院學報;1993年06期
相關博士學位論文 前1條
1 劉立渠;鋼筋混凝土板考慮加載面積邊長比及縱筋影響的抗沖切試驗研究[D];中國建筑科學研究院;2006年
相關碩士學位論文 前1條
1 張元偉;鋼筋混凝土板抗沖切試驗研究[D];湖南大學;2009年
本文編號:1837228
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1837228.html