地震火災后鋼筋混凝土柱的抗震性能研究
本文選題:鋼筋混凝土柱 + 抗火性能; 參考:《湖南大學》2015年碩士論文
【摘要】:近年來頻頻發(fā)生的建筑火災事故造成了巨大的經濟損失,更奪走了許多寶貴的生命,為了減少甚至防止此類悲劇的再次發(fā)生,鋼筋混凝土柱作為混凝土結構的主要承重構件之一,其抗火性能研究十分重要。本文通過大量文獻調查,根據國內外的研究成果對鋼筋混凝土柱的抗火性能包括耐火極限和火災后的受力性能進行了綜述。通過對526個試件試驗數據的統(tǒng)計分析,確定了鋼筋混凝土柱抗火性能的影響因素包括:(1)溫度和受火時間;(2)受火方式;(3)截面尺寸;(4)混凝土強度、骨料種類;(5)軸壓比和荷載偏心距;(6)縱向配筋;(7)混凝土保護層厚度、箍筋、長細比、柱端約束條件等。本文對目前學者提出的鋼筋混凝土柱抗火性能的簡化理論計算方法進行介紹,并通過計算值與試驗值的比較,對這些方法的準確度及可行性進行了評估,并采用以上方法對本文試驗試件的抗火性能計算進一步驗證了其可行性。結果表明Kodur和Raut的計算方法和Dotreppe等的計算方法分別對鋼筋混凝土柱耐火極限、火災后殘余受壓承載力的計算偏安全,適用于保守計算鋼筋混凝土柱的抗火性能。吳波等的計算方法對耐火極限的計算值和Kodur等的計算方法對火災后殘余受壓承載力的計算值與試驗值較為接近,但變異系數略偏大,僅適用于粗略計算鋼筋混凝土柱的抗火性能。已有地震災害表明,地震后火災常有發(fā)生,然而目前針對經歷地震荷載作用后的鋼筋混凝土柱抗火性能的研究未見于國內外已發(fā)表文獻中,因此本文對鋼筋混凝土柱在地震荷載作用后的抗火性能進行了試驗研究。通過4根常溫鋼筋混凝土柱和4根經歷地震火災作用全過程的鋼筋混凝土柱的低周循環(huán)加載試驗,探究了地震火災后鋼筋混凝土柱的抗震性能,并考察了縱向鋼筋直徑大小、箍筋體積配筋率對地震火災后鋼筋混凝土柱的受剪承載力、延性、滯回耗能能力等的影響。結果表明,地震火災后鋼筋混凝土柱的受剪承載力、剛度及延性均較常溫鋼筋混凝土柱降低,但能量耗散系數大幅度增加。增加縱向鋼筋直徑或箍筋體積配筋率均有助于提高地震火災后鋼筋混凝土柱的受剪承載力和剛度;當縱筋直徑較小時,增加箍筋體積配筋率可提高地震火災后鋼筋混凝土柱的延性;但增加箍筋體積配筋率將減小鋼筋混凝土柱在地震火災后的能量耗散系數。
[Abstract]:The frequent building fire accidents in recent years have caused enormous economic losses and taken away many precious lives. In order to reduce or even prevent the recurrence of such tragedies, As one of the main load-bearing members of reinforced concrete structures, it is very important to study the fire resistance of reinforced concrete columns. In this paper, the fire resistance of reinforced concrete columns, including the fire resistance limit and the mechanical behavior after fire, is summarized according to the domestic and foreign research results through a large number of literature investigations. Based on the statistical analysis of the test data of 526 specimens, the factors influencing the fire resistance of reinforced concrete columns are determined, which include: 1) the temperature and the time of fire are 2)) the size of section is 3))) the strength of concrete is determined. The concrete cover thickness, stirrups, aspect ratio, column end constraint conditions and so on. In this paper, the simplified theoretical calculation methods for the fire resistance of reinforced concrete columns are introduced, and the accuracy and feasibility of these methods are evaluated by comparing the calculated values with the experimental values. The above method is used to further verify the feasibility of the fire resistance calculation of the specimen tested in this paper. The results show that the calculation methods of Kodur and Raut and Dotreppe and so on are safe to calculate the fire resistance of reinforced concrete columns and the residual compressive capacity after fire, which is suitable for conservatively calculating the fire resistance of reinforced concrete columns. The calculated values of the fire resistance limit of Wu Bo et al and Kodur et al are close to the experimental values, but the coefficient of variation is slightly larger. It is only suitable for rough calculation of fire resistance of reinforced concrete columns. Earthquake disasters have shown that fires often occur after earthquakes. However, the research on fire resistance of reinforced concrete columns after earthquake loads has not been reported in the literature published at home and abroad. Therefore, the fire resistance of reinforced concrete columns subjected to earthquake load is studied experimentally in this paper. Based on the low-cycle cyclic loading tests of four reinforced concrete columns at room temperature and four reinforced concrete columns subjected to the whole process of earthquake fire, the seismic behavior of reinforced concrete columns after earthquake fire was investigated, and the diameter of longitudinal steel bars was investigated. The effect of volume reinforcement ratio of stirrups on shear capacity, ductility and hysteretic energy dissipation capacity of reinforced concrete columns after earthquake fire. The results show that the shear capacity, stiffness and ductility of reinforced concrete columns after earthquake fire are lower than those of normal temperature reinforced concrete columns, but the energy dissipation coefficient increases greatly. Increasing the diameter of longitudinal steel bar or the ratio of volume reinforcement of stirrups will help to improve the shear capacity and stiffness of reinforced concrete columns after earthquake fire, when the diameter of longitudinal reinforcement is small, The ductility of reinforced concrete columns after earthquake fire can be improved by increasing the volume reinforcement ratio of stirrups, but the energy dissipation coefficient of reinforced concrete columns will be reduced by increasing the volume reinforcement ratio of stirrups.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TU375.3;TU352.11
【參考文獻】
相關期刊論文 前10條
1 王建民;袁麗莉;汪能君;蔣文婷;賀智敏;;高溫加熱后輕骨料混凝土力學性能實驗研究[J];自然災害學報;2014年01期
2 徐玉野;楊清文;吳波;徐明;;高溫后鋼筋混凝土短柱抗震性能試驗研究[J];建筑結構學報;2013年08期
3 苗吉軍;公偉;陳娜;劉延春;邊忠亮;;使用損傷鋼筋混凝土柱高溫作用下受力性能試驗研究與有限元分析[J];建筑結構學報;2013年08期
4 王志偉;霍靜思;郭玉榮;;降溫方式對高溫后鋼筋混凝土短柱軸壓力學性能的影響[J];建筑材料學報;2013年03期
5 王志偉;霍靜思;郭玉榮;;有約束應力高溫全過程后混凝土軸壓力學性能試驗研究[J];安全與環(huán)境學報;2012年02期
6 苗吉軍;王俊富;劉才瑋;劉延春;齊波;;損傷后混凝土框架結構火災試驗研究[J];建筑結構學報;2012年02期
7 唐躍鋒;劉明哲;于長海;李俊華;;火災后鋼筋混凝土柱剩余承載力研究[J];寧波大學學報(理工版);2011年04期
8 張家廣;霍靜思;肖巖;;高溫作用后鋼筋混凝土短柱軸壓力學性能試驗研究[J];建筑結構學報;2011年04期
9 周立欣;賈文亮;張必亮;李世鳴;;骨料類型對混凝土棱柱體高溫后力學性能影響研究[J];河南城建學院學報;2011年01期
10 吳波;李毅海;;軸向約束鋼筋混凝土柱火災后剩余軸壓性能的試驗研究[J];土木工程學報;2010年04期
相關碩士學位論文 前2條
1 吳昊;高溫后鋼筋混凝土黏結性能試驗研究[D];青島理工大學;2009年
2 曾翔;火災全過程作用后鋼管混凝土柱滯回性能試驗研究[D];湖南大學;2009年
,本文編號:1798088
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1798088.html