鋼管混凝土收縮徐變性能研究
本文關(guān)鍵詞: 鋼管混凝土 收縮試驗(yàn) 徐變?cè)囼?yàn) 徐變系數(shù) 有限元分析 出處:《西南交通大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著鋼管混凝土在高層建筑、大跨度橋梁中的使用越來越多,由混凝土的收縮徐變而引起的結(jié)構(gòu)撓度變化、體系轉(zhuǎn)換后的內(nèi)力重分布等問題日益突出,將影響到鋼管混凝土結(jié)構(gòu)的長(zhǎng)期使用性能,因此,鋼管混凝土的收縮徐變問題已成為工程設(shè)計(jì)中不可忽視的因素。鋼管混凝土構(gòu)件由于核心混凝土處在鋼管內(nèi)部,其核心混凝土與外界沒有空氣接觸,核心混凝土收縮量基本可以忽略不計(jì)。鋼管混凝土構(gòu)件中核心混凝土和鋼管的相互作用比較復(fù)雜,核心混凝土處于三向應(yīng)力狀態(tài)核心混凝土徐變引起的內(nèi)力重分布問題比普通混凝土更為復(fù)雜。因而對(duì)鋼管混凝土構(gòu)件的收縮徐變研究十分必要。本文依托北盤江大橋?yàn)楸尘?在施工現(xiàn)場(chǎng)對(duì)素混凝土和鋼管混凝土的長(zhǎng)期性能做了對(duì)比試驗(yàn),得出鋼管混凝土的收縮徐變規(guī)律,并且對(duì)素混凝土試驗(yàn)數(shù)據(jù)進(jìn)行了擬合。由于鋼管混凝土中核心混凝土和鋼管復(fù)雜的相互作用,為考察鋼管和核心混凝土相互作用和局部效應(yīng),提出了一種單軸鋼管混凝土結(jié)構(gòu)徐變的直接計(jì)算方法和兩種鋼管混凝土結(jié)構(gòu)徐變的有限元計(jì)算方法:(1)不考慮加載齡期的影響,根據(jù)鋼管和核心混凝土的變形協(xié)調(diào)條件,利用齡期調(diào)整的有效模量法推導(dǎo)出鋼管混凝土徐變變形和時(shí)間的關(guān)系;(2)考慮加載齡期的影響,通過把時(shí)間t劃分為一系列時(shí)段,需要存儲(chǔ)應(yīng)力歷史,通過疊加各個(gè)時(shí)間段徐變系數(shù)和應(yīng)變分量乘積,利用通用有限元軟件ANSYS計(jì)算得到最后時(shí)刻的徐變應(yīng)變;(3)利用齡期調(diào)整的有效模量法推導(dǎo)出任意時(shí)間點(diǎn)的應(yīng)力應(yīng)變關(guān)系,將徐變轉(zhuǎn)化為彈性變形,計(jì)算任意時(shí)間點(diǎn)的徐變變形。本文通過通用有限元軟件ANSYS提供的參數(shù)化設(shè)計(jì)語言(APDL),可以實(shí)現(xiàn)鋼管混凝土徐變的有限元求解。還研究了含鋼率對(duì)鋼管混凝土徐變的影響。同時(shí)也用MIDAS CIVIL建立勁性骨架鋼管混凝土全橋有限元模型進(jìn)行施工階段仿真分析。
[Abstract]:With the increasing use of concrete-filled steel tube (CFST) in high-rise buildings, the structural deflection caused by shrinkage and creep of concrete and the redistribution of internal force after system conversion become more and more serious. Therefore, the shrinkage and creep of concrete-filled steel tube (CFST) has become an important factor in engineering design. The core concrete has no air contact with the outside world, and the shrinkage of the core concrete can be neglected basically. The interaction between the core concrete and the steel tube in the concrete filled steel tube member is quite complex. The internal force redistribution caused by core concrete creep is more complex than that of ordinary concrete, so it is necessary to study the shrinkage and creep of concrete-filled steel tube members. The long-term performance of plain concrete and concrete-filled steel tube (CFST) is compared with that of concrete filled steel tube (CFST) in the construction site, and the law of shrinkage and creep of CFST is obtained. The experimental data of plain concrete are fitted. Because of the complex interaction between the core concrete and the steel tube in concrete filled steel tube, the interaction and local effect between the core concrete and the steel tube are investigated. A direct calculation method for creep of concrete filled steel tube (CFST) structure with uniaxial axis and two finite element methods for calculating creep of concrete filled steel tubular structure (CFST) are presented. The influence of loading age is not considered, according to the deformation coordination condition between steel tube and core concrete. The relationship between creep deformation and time of concrete-filled steel tube (CFST) is deduced by using the effective modulus method of age adjustment. The influence of loading age is considered. By dividing time t into a series of periods, the stress history needs to be stored. By superposing the product of creep coefficient and strain component in each time period and using the universal finite element software ANSYS to calculate the creep strain at the last moment, the stress-strain relationship at any time point is deduced by using the effective modulus method of age adjustment. Turning creep into elastic deformation, The creep deformation at any time point is calculated. In this paper, the finite element solution of concrete filled steel tube creep can be realized by using the parametric design language provided by the general finite element software ANSYS. The effect of steel content ratio on the creep of concrete filled steel tube is also studied. At the same time, MIDAS CIVIL is used to establish the finite element model of the steel tubular concrete filled steel tube (CFST) bridge.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TU398.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 衛(wèi)凌云;劉繼高;杜學(xué)斌;楊紅娟;范玉林;;鋼管通徑機(jī)探討[J];工程建設(shè)與設(shè)計(jì);2006年04期
2 王獻(xiàn)抗;葉金鐸;馬敘;田倩倩;李雪;鮑巖;;鋼管三輥連軋成型過程的有限元分析[J];重型機(jī)械;2014年01期
3 杜春祿;;配線鋼管敷設(shè)的幾種做法[J];電工技術(shù);1989年10期
4 李琳;;鋼管截面積減小對(duì)立桿受壓承載力的影響[J];浙江建筑;2007年02期
5 王永貴;高爾新;;端部加強(qiáng)型雙重鋼管防屈曲支撐試驗(yàn)研究[J];世界地震工程;2012年04期
6 李哲;葉金鐸;馬敘;席玉廷;王獻(xiàn)抗;;弧型模和錐型?瞻武摴艹尚蜋C(jī)理的研究[J];重型機(jī)械;2013年01期
7 傅禎海;;一種提高磨削鋼管表面粗糙度的裝置[J];精密制造與自動(dòng)化;2013年03期
8 劉忠德;鋼管標(biāo)準(zhǔn)外徑偏差對(duì)卡套連接影響的探討[J];鋼管;2001年06期
9 張才安;工藝因素對(duì)鋼管外徑精度的影響[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年02期
10 王春英;王毅紅;杜建軍;;芯鋼管混凝土節(jié)點(diǎn)的芯管壁厚與節(jié)點(diǎn)承載力關(guān)系的數(shù)值分析[J];基建優(yōu)化;2006年02期
相關(guān)會(huì)議論文 前5條
1 ;華菱衡鋼720分廠成功軋制外徑740毫米鋼管[A];《電站信息》2012年第8期[C];2012年
2 閆亞杰;雷宏剛;;鋼管—焊接空心球節(jié)點(diǎn)在單軸拉伸作用下的應(yīng)力集中分析及靜力試驗(yàn)研究[A];鋼結(jié)構(gòu)工程研究⑧——中國(guó)鋼協(xié)結(jié)構(gòu)穩(wěn)定與疲勞分會(huì)第12屆(ASSF-2010)學(xué)術(shù)交流會(huì)暨教學(xué)研討會(huì)論文集[C];2010年
3 沈e,
本文編號(hào):1538288
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1538288.html