灰?guī)r地區(qū)危巖類砌體結(jié)構(gòu)破壞解體機(jī)制研究
本文關(guān)鍵詞: 灰?guī)r地區(qū)危巖 類砌體結(jié)構(gòu) 解體機(jī)制 有限元 斷裂力學(xué) 模型試驗 出處:《重慶交通大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:灰?guī)r地區(qū)危巖“類砌體結(jié)構(gòu)”特征導(dǎo)致危巖體破壞時呈現(xiàn)與砂巖地區(qū)危巖破壞不同現(xiàn)象,灰?guī)r地區(qū)危巖體破壞后解體現(xiàn)象十分顯著,所形成的崩塌災(zāi)害具有群發(fā)性。因此,開展灰?guī)r地區(qū)危巖類砌體結(jié)構(gòu)破壞解體機(jī)制研究對于科學(xué)認(rèn)識三峽灰?guī)r地區(qū)崩塌災(zāi)害形成機(jī)制具有重要意義。本文以重慶市巫山縣望霞危巖為實際工程背景,采用有限元數(shù)值模擬方法、材料力學(xué)、斷裂力學(xué)理論結(jié)合室內(nèi)小尺度模型試驗研究灰?guī)r地區(qū)危巖類砌體結(jié)構(gòu)破壞解體機(jī)制。主要研究成果如下:(1)針對灰?guī)r地區(qū)危巖,采用實地踏勘及野外地質(zhì)調(diào)查的形式,構(gòu)建了適合于分析灰?guī)r地區(qū)危巖類砌體結(jié)構(gòu)破壞機(jī)制的地質(zhì)模型。定義了危巖高臺比(H/B)的概念,將危巖高臺比H/B1時的危巖破壞解體類型定義為“類砌體結(jié)構(gòu)頂部拉剪解體機(jī)制”;將危巖高臺比H/B1時的危巖破壞解體類型定義為“類砌體結(jié)構(gòu)底部拉剪解體機(jī)制”。(2)針對“類砌體結(jié)構(gòu)頂部拉剪解體機(jī)制”,采用有限元數(shù)值模擬方法,分析獲得了頂部拉剪解體型危巖體內(nèi)部拉剪區(qū)域隨危巖懸高比c/H、高寬比H/b及危巖體傾角θ的變化規(guī)律。在類砌體型危巖砌塊交界處定義初始裂紋,引入斷裂力學(xué)邊裂紋拉剪破壞模型,據(jù)此采用斷裂力學(xué)經(jīng)典解答,分析了類砌體結(jié)構(gòu)頂部拉剪解體機(jī)制,獲得了不同懸高比c/H、高寬比H/b及危巖體傾角θ的危巖解體判據(jù);以重慶市巫山縣望霞危巖區(qū)內(nèi)W1危巖體為例,預(yù)測了該危巖體開裂區(qū)分布圖。同時針對“類砌體結(jié)構(gòu)底部拉剪解體機(jī)制”,采用類似方法獲得了不同高寬比H/b及危巖體傾角θ的危巖解體判據(jù)。以重慶市巫山縣望霞危巖區(qū)內(nèi)W2危巖體為例,預(yù)測了該危巖體開裂區(qū)分布圖。(3)將類砌體型危巖視為一能量體系,建立系統(tǒng)能量方程,推導(dǎo)危巖體座滑過程中能量釋放量,同時構(gòu)建了與此過程對應(yīng)的危巖體突發(fā)性解體判據(jù)。以望霞W2危巖為例,預(yù)測該危巖體座滑偏轉(zhuǎn)到傾角34°時即可能發(fā)生突發(fā)性解體現(xiàn)象。(4)實施了三個高度530mm、795mm和1060mm,三個寬度230mm、345mm和460mm,三個傾角80°、70°和60°,以及三種粘結(jié)方式無粘結(jié)、粘土粘結(jié)和M5砂漿粘結(jié)共計81組試驗工況的81個模型傾倒過程解體試驗,發(fā)現(xiàn)類砌體型危巖高寬比越大,發(fā)生傾倒時初始開裂位置的相對高度越小;類砌體型危巖傾角越大,發(fā)生傾倒時初始開裂位置的相對高度越高;粘結(jié)方式對類砌體型危巖初始開裂位置無影響,但粘結(jié)方式能決定危巖體在傾倒過程中是否開裂,以及開裂范圍大小,無粘結(jié)情況下,開裂的可能性大且發(fā)生開裂時分布范圍也較有粘結(jié)情況廣。
[Abstract]:The characteristics of "masonry structure" of dangerous rock in limestone area lead to a different phenomenon when dangerous rock mass is destroyed than that in sandstone area, and the phenomenon of breakup after destruction of dangerous rock mass in limestone area is very significant. The avalanche formed by the disaster has mass occurrence. It is of great significance to study the mechanism of destruction and disintegration of dangerous rock masonry structure in limestone area for the scientific understanding of the formation mechanism of collapse disaster in the three Gorges limestone area. This paper takes Wangxia dangerous rock in Wushan County of Chongqing as the actual engineering background. The finite element numerical simulation method is used to simulate the mechanics of materials. The failure and disintegration mechanism of dangerous rock masonry structure in limestone area is studied by the theory of fracture mechanics combined with laboratory small-scale model test. The main research results are as follows: 1) aiming at dangerous rock in limestone area. In this paper, a geological model suitable for analyzing the failure mechanism of dangerous rock masonry structure in limestone area is constructed by means of field exploration and field geological survey, and the concept of dangerous rock platform ratio H / B is defined. The break-up type of dangerous rock is defined as "tensile and shear collapse mechanism at the top of masonry structure" when the height of dangerous rock is higher than that of H / B1. The break-up type of dangerous rock is defined as "tensile and shear collapse mechanism at the bottom of masonry structure" when the height of dangerous rock is higher than that of H / B1, and the "top tensile and shear disintegration mechanism of similar masonry structure" is defined as "tensile and shear disintegration mechanism at the top of similar masonry structure". The finite element numerical simulation method is used to analyze and obtain the ratio c / h of the tensile shear region with the hanging height of the dangerous rock in the top tension shear break-up type dangerous rock. The variation law of aspect ratio H / b and slope angle 胃 of dangerous rock mass. The initial crack is defined at the junction of the similar masonry dangerous rock block, and the fracture mechanics edge crack tensile and shear failure model is introduced, according to which the classical solution of fracture mechanics is adopted. In this paper, the mechanism of tensile and shear breakup at the top of masonry structure is analyzed, and the criteria of break-up of dangerous rock with different ratio of hanging height c / H, ratio of height to width H / b and slope angle 胃 of dangerous rock mass are obtained. Taking the W1 dangerous rock mass in Wangxia perilous rock area of Wushan County as an example, the distribution map of the cracking area of the dangerous rock mass is predicted. At the same time, the "tensile and shear disintegration mechanism at the bottom of the similar masonry structure" is also discussed. By using the similar method, the criterion of dangerous rock disintegration with different aspect ratio H / b and dangerous rock mass inclination 胃 is obtained. Taking W2 dangerous rock mass in Wangxia perilous rock area, Wushan County, Chongqing as an example. The fracture zone distribution map of the dangerous rock mass is predicted. (3) taking the type of masonry dangerous rock as an energy system, the energy equation of the system is established, and the amount of energy released during the sliding process of the dangerous rock mass is deduced. At the same time, the criterion of sudden disintegration of dangerous rock mass corresponding to this process is constructed, taking Wangxia W2 dangerous rock as an example. It is predicted that the sudden disintegration may occur when the slide of the dangerous rock body deflects to the inclination angle of 34 擄.) three heights of 530mm / 795mm and 1060mm and three widths of 230mm are carried out. 345mm and 460mm, with three inclination angles of 80 擄, 70 擄and 60 擄, and the three kinds of bonding methods without bond. The collapse tests of 81 models under 81 test conditions of clay bond and M5 mortar bond show that the larger the ratio of height to width of dangerous rock of masonry type is, the smaller the relative height of initial cracking position is at the time of dumping. The higher the inclined angle of the similar masonry dangerous rock is, the higher the relative height of the initial cracking position is when the collapse occurs. The bonding mode has no effect on the initial cracking position of the type of masonry dangerous rock, but the bond mode can determine whether the dangerous rock mass cracks during the dumping process, and the extent of the crack, without the case of bond. The possibility of cracking is high and the distribution range of cracking is wider than that of bond.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TU364;TU312.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何瀟;陳洪凱;唐紅梅;李清;;長江三峽灰?guī)r區(qū)危巖形成機(jī)理及穩(wěn)定性分析研究[J];西南大學(xué)學(xué)報(自然科學(xué)版);2014年06期
2 劉一凌;屈鐵軍;;強(qiáng)震作用下砌體結(jié)構(gòu)變形及破壞特性試驗研究[J];北方工業(yè)大學(xué)學(xué)報;2013年03期
3 梁炯;許蛟;謝忠勝;石勝偉;;平推滑坡式危巖崩塌誘因機(jī)制及防治措施[J];探礦工程(巖土鉆掘工程);2013年07期
4 李克森;馮建國;;考慮滲透力作用的三峽庫區(qū)危巖失穩(wěn)破壞機(jī)理[J];中國水運(yùn)(下半月);2013年05期
5 何曉英;陳洪凱;唐紅梅;;長江巫峽望霞危巖破壞解體特征分析[J];人民長江;2013年09期
6 李佳壕;吳禮舟;;危巖應(yīng)力強(qiáng)度因子的計算研究[J];工程地質(zhì)學(xué)報;2013年02期
7 王繼兵;周德源;雷真;;BFRP加固砌體結(jié)構(gòu)試驗研究[J];四川大學(xué)學(xué)報(工程科學(xué)版);2013年02期
8 王根龍;伍法權(quán);祁生文;于國強(qiáng);蘇天明;;塑流-拉裂式崩塌機(jī)制及評價方法[J];巖石力學(xué)與工程學(xué)報;2013年S1期
9 陳洪凱;張瑞剛;唐紅梅;趙先濤;;壓剪型危巖破壞彈沖動力參數(shù)研究[J];振動與沖擊;2012年24期
10 鄧珊珊;陳洪凱;游來鳳;;喀斯特山區(qū)危巖崩塌形成機(jī)制研究——以三峽庫區(qū)巫溪海螺灣危巖為例[J];重慶師范大學(xué)學(xué)報(自然科學(xué)版);2012年06期
相關(guān)會議論文 前1條
1 王小委;陳洪凱;;墜落式危巖主控結(jié)構(gòu)面端部塑性區(qū)分析[A];第22屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅱ冊[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 楊海清;裂隙巖體動態(tài)損傷局部化機(jī)理的理論及應(yīng)用[D];重慶大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 魯園春;軸心受壓磚砌體的試驗與研究[D];湖南大學(xué);2005年
,本文編號:1454694
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1454694.html