中南丘陵地區(qū)地源熱泵系統(tǒng)優(yōu)化設計的模擬研究
本文關鍵詞:中南丘陵地區(qū)地源熱泵系統(tǒng)優(yōu)化設計的模擬研究 出處:《湖南大學》2015年碩士論文 論文類型:學位論文
更多相關文章: 地源熱泵 動態(tài)負荷 土壤熱平衡 管網水力特性 TRNSYS
【摘要】:隨著社會經濟高速發(fā)展,建筑能耗也迅速增長,能源問題和環(huán)境問題漸漸凸顯。節(jié)能減排政策應運而生。地源熱泵作為利用可再生能源的技術,以其環(huán)保、節(jié)能等特點而得到廣泛的應用。然而在實際工程中,部分地源熱泵系統(tǒng)并沒體現(xiàn)其性能上的優(yōu)越性,反而因其短暫的使用壽命和較大的初投資而被人詬病。研究者往往將問題的根源歸結于土壤的換熱性能和土壤熱平衡問題,卻忽視了管網水力特性對系統(tǒng)運行效率的影響。本文認為管網水力特性與土壤熱平衡對地源熱泵系統(tǒng)高效運行的作用同等重要。為此,本文以中南丘陵地區(qū)某展示館地源熱泵系統(tǒng)為例,采用De ST模擬建筑全年動態(tài)負荷;利用TRNSYS16建立仿真模型,研究影響土壤平均溫度的因素和其合理的設計范圍,并探討不同因素的影響程度;同時利用Pipe Flow Expert軟件建立管網模型,分析管網的水力特性;最后利用TRNSYS16對系統(tǒng)進行建模,模擬系統(tǒng)的長期運行特性及管網阻力與土壤熱平衡的關系,并以全年輸送系統(tǒng)綜合COP為評價指標,對鉆井深度、鉆井間距、埋管長度和埋管形式進行優(yōu)化。研究結果表明:1.在地源熱泵系統(tǒng)承擔的建筑負荷中,負荷率低于40%的時間占到41%;地埋管全年累積負荷不平衡率為67.3%;2.以埋管周圍平均溫度作為參考標準,如果考慮系統(tǒng)的初投資成本,并不考慮系統(tǒng)的間歇運行,鉆井最佳深度為60m-100m,鉆井最佳間距為4.0m-5.0m,回填材料的最佳導熱系數(shù)為1.7-2.1 W/(m·K);對土壤平均溫度的影響程度由主到次依次為鉆井間距、鉆井深度、鉆井數(shù)量、回填材料導熱系數(shù);3.豎直埋管部分的阻力在整個分區(qū)總阻力的80%,屬于分區(qū)管網優(yōu)化的重點對象;減小機房到埋管區(qū)域的管段長度能夠有效地減小管網的總阻力;4.對于本系統(tǒng),以全年地埋管側輸送系統(tǒng)綜合COP作為評價指標,在考慮管網水力特性、土壤熱平衡及初投資成本的前提下,鉆井深度宜為60m-90m,鉆井間距宜為4.0m-5.0m。保證鉆井深度相同時,雙U型埋管的COP高于單U;保證埋管長度相同時,存在一個臨界管長,當?shù)芈窆荛L度小于24000m時,宜采用單U埋管,當?shù)芈窆荛L度大于24000m時,則宜采用雙U埋管。本文對中南丘陵地區(qū)某展示館地源熱泵系統(tǒng)進行模擬研究,為地源熱泵系統(tǒng)的優(yōu)化設計提供理論依據(jù)和指導。本文的結論對于類似地區(qū)同樣適用。
[Abstract]:With the rapid development of economy, energy consumption is also growing rapidly, energy and environmental problems gradually emerged. Energy saving and emission reduction policy came into being. The ground source heat pump as the use of renewable energy technology, with its environmental protection, energy saving features are widely used in practical engineering. However, part of the ground source heat pump system does not reflect its superiority performance on the contrary, because of its short service life and large initial investment and being criticized. Researchers tend to thermal properties and soil heat balance at the root of the problem is due to the soil, but ignore the influence of hydraulic characteristics on the running efficiency of the system. This paper argues that the hydraulic characteristics and soil heat balance of pipe network the operation of GSHP system are equally important role. Therefore, an exhibition hall in the south of GSHP system in hilly area as an example, using the De ST simulation of building annual dynamic negative Holland; using TRNSYS16 to build the simulation model, the influencing factors on the average temperature of the soil and the reasonable range of the design, and to explore the influence of different factors; at the same time model using Pipe Flow Expert software, analysis of hydraulic characteristics of pipe network; finally the use of TRNSYS16 for system modeling, the relationship between long-term operating characteristics and pipe resistance simulation system with the soil heat balance, and to the comprehensive transportation system COP as the evaluation index, the drilling depth, drilling spacing, tube length and tube form were optimized. The results show that: 1. in the construction of the load borne ground source heat pump system, the load is lower than 40% of the time accounted for 41%; annual cumulative buried pipe the load imbalance rate is 67.3% to 2.; the average temperature around the pipe as the reference standard, if we consider the system initial investment cost, does not consider the intermittent operation of the system, the optimal drilling depth For 60m-100m, the optimal drilling spacing is 4.0m-5.0m, the best thermal conductivity of backfill material for 1.7-2.1 W/ (m, K); the degree of impact on the average temperature of the soil from the primary to secondary are drilling spacing, drilling depth, drilling quantity, the thermal conductivity of backfill materials; pipe buried 3. vertical resistance in the whole area total resistance 80%, belonging to the district pipe network optimization focus; the total resistance decreases to room area of the buried pipe pipe length can effectively reduce the network; 4. for this system, the tube side conveying system integrated COP as the evaluation index to the ground, considering the hydraulic characteristics and soil heat balance and the initial investment cost under the premise. Drilling depth should be 60m-90m, wells spacing should be 4.0m-5.0m. to ensure the drilling depth is same, the double U tube COP is higher than that of single U; ensure the tube length is the same, there is a critical length, when the pipe length is less than 24000m When, should adopt the single U pipe, tube length is greater than the 24000m buried local, are advised to adopt double U tube. The simulation results of a museum of GSHP system in hilly area of South China, provide theoretical basis and guidance for the design of the GSHP system. The conclusion of this paper is also applicable to class like area.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TU83
【參考文獻】
相關期刊論文 前10條
1 龔光彩;曾令文;王漢青;蘇歡;陳帆;;基于TRNSYS的雙U型垂直埋管換熱器的模擬分析[J];湖南大學學報(自然科學版);2014年11期
2 張海琳;余躍進;胡純良;;地埋管地源熱泵地埋管管徑的選取[J];暖通空調;2012年12期
3 王艷;刁乃仁;王京;;U型管地熱換熱器熱作用半徑的數(shù)值模擬[J];建筑熱能通風空調;2011年03期
4 谷立靜;郁聰;;我國建筑能耗數(shù)據(jù)現(xiàn)狀和能耗統(tǒng)計問題分析[J];中國能源;2011年02期
5 張曉明;吳建坤;魏凌敏;;垂直U型管換熱器周圍土壤溫度場的數(shù)值模擬[J];沈陽建筑大學學報(自然科學版);2011年01期
6 楊昌智;黃兵;;U型管換熱性能影響因素研究[J];湖南大學學報(自然科學版);2009年S2期
7 周志華;張覺榮;張士花;;土壤源熱泵地埋管周圍土壤溫度變化規(guī)律研究[J];太陽能學報;2009年11期
8 劉俊;張旭;高軍;李魁山;;地源熱泵樁基埋管傳熱性能測試與數(shù)值模擬研究[J];太陽能學報;2009年06期
9 馬宏權;龍惟定;;地埋管地源熱泵系統(tǒng)的熱平衡[J];暖通空調;2009年01期
10 仉安娜;唐遠明;;環(huán)保節(jié)能地源熱泵技術應用研究[J];環(huán)境保護與循環(huán)經濟;2008年12期
相關博士學位論文 前1條
1 張海龍;中國新能源發(fā)展研究[D];吉林大學;2014年
相關碩士學位論文 前9條
1 馬文涓;冷卻塔輔助地源熱泵系統(tǒng)的設計與運行策略分析研究[D];西安建筑科技大學;2013年
2 張俊杰;累計冷熱負荷比對兩種形式的土壤源熱泵系統(tǒng)性能參數(shù)的影響研究[D];華中科技大學;2013年
3 丁兆磊;太陽能—地源熱泵復合系統(tǒng)的模擬優(yōu)化[D];山東建筑大學;2013年
4 徐建軍;地埋管地源熱泵系統(tǒng)的水力平衡與優(yōu)化[D];山東建筑大學;2013年
5 宋光前;復合式地源熱泵系統(tǒng)控制策略分析[D];華中科技大學;2013年
6 馬園園;典型氣候區(qū)辦公建筑復合式地埋管地源熱泵系統(tǒng)控制策略分析[D];重慶大學;2012年
7 吳長燕;土壤源熱泵系統(tǒng)井群水流量分配研究[D];合肥工業(yè)大學;2012年
8 胥曉e,
本文編號:1403473
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1403473.html