隧道爆破作用下砌體結(jié)構(gòu)動力反應及控制研究
本文關(guān)鍵詞:隧道爆破作用下砌體結(jié)構(gòu)動力反應及控制研究 出處:《北京交通大學》2015年博士論文 論文類型:學位論文
更多相關(guān)文章: 隧道爆破 砌體結(jié)構(gòu) 動力反應 結(jié)構(gòu)損傷 振動控制
【摘要】:近年來,近距下穿城區(qū)建筑群的隧道工程越來越多,當采用鉆爆法施工時,爆破振動經(jīng)常會對上部建筑物造成局部損傷。本文依托成渝客運專線重慶新紅巖隧道工程,針對隧道上部山坡典型二層砌體樓房進行研究,主要成果如下: 1.研究了隧道爆破引起的山坡淺埋側(cè)和深埋側(cè)的爆破振動特征,闡述了基于監(jiān)測數(shù)據(jù)分析的爆破振動安全評價方法。隧道爆破引起的山坡淺埋側(cè)和深埋側(cè)的豎向或水平振速的大小取決于爆心距和應力波與豎直方向的夾角2個因素;山坡的深埋側(cè)地表振速較小、頻率較低,而淺埋側(cè)地表振速較大、頻率較高,需要綜合比較兩側(cè)的主頻和振速評價建筑物的振動安全性。 2.進行了隧道爆破振動激勵的典型二層砌體樓房OMA模態(tài)試驗,采用增強的頻域分解法和隨機子空間法研究了二層砌體樓房的模態(tài)參數(shù)(固有頻率、振型和阻尼);根據(jù)OMA模態(tài)試驗結(jié)果建立了砌體樓房結(jié)構(gòu)模型,研究了砌體樓房低階整體模態(tài)和高階局部模態(tài)下的動力特性。二層砌體樓房1-5階固有頻率為8.80~24.99Hz,振型表現(xiàn)為整體均勻變形;6-20階固有頻率為26.10~36.34Hz,振型表現(xiàn)為薄弱的局部構(gòu)件振動較大;薄弱墻體和突出部位2類典型局部構(gòu)件的1-10階固有頻率為5.09-157.55Hz,局部構(gòu)件的固有頻率顯著高于樓房整體,隧道爆破振動引起的是建筑物局部構(gòu)件較強的動力反應。 3.研究了隧道爆破作用下典型二層砌體樓房結(jié)構(gòu)的動力反應,揭示了隧道爆破作用下樓房的振速特征、位移特征、混凝土和磚墻構(gòu)件的應力分布及變化規(guī)律。砌體樓房局部構(gòu)件的振速和位移幅值顯著大于整體;隧道爆破作用下樓房的動力反應主要受瞬時產(chǎn)生的高應力控制,而不是位移;隨著峰值振速增加,結(jié)構(gòu)應力隨之增大,隨著振動主頻增大,結(jié)構(gòu)應力隨之降低;當爆破振動主頻遠離建筑物的低階整體固有頻率時,可以只考慮豎向振動影響,忽略水平振動影響。 4.研究了隧道爆破作用下砌體樓房的損傷機理和開裂部位,提出了爆破振動下砌體樓房的損傷鑒定和評估方法。砌體樓房的局部構(gòu)件受隧道爆破振動影響較大,當峰值振速較大引起局部構(gòu)件上應力水平較高時,可能發(fā)生損傷導致開裂;此外,角部應力集中部位、磚墻與混凝土接觸部位和預制樓板接縫在隧道爆破振動下也容易產(chǎn)生開裂。 5.提出了電子雷管實現(xiàn)單孔間隔起爆的延時計算方法,研究了電子雷管單孔間隔起爆降低峰值振速和提高振動主頻的原理。電子雷管實現(xiàn)單孔間隔起爆的延時需要不小于單孔巖石破碎和拋擲位移為10cm的總時間,其峰值振速低于段藥量起爆,主頻高于段藥量起爆,并且分別接近于單孔藥量起爆的振速和主頻。
[Abstract]:In recent years, there are more and more tunnel projects through urban buildings in short distance, when drilling and blasting method is used. Blasting vibration often causes local damage to the upper building. Based on Chongqing Xinhong Rock Tunnel Project of Chengdu-Chongqing passenger dedicated Line, the typical two-story masonry building on the upper slope of the tunnel is studied in this paper. The main results are as follows: 1. The blasting vibration characteristics of shallow buried side and deep buried side of hillside caused by tunnel blasting are studied. The safety evaluation method of blasting vibration based on monitoring data analysis is expounded. The magnitude of vertical or horizontal vibration velocities of shallow and deep buried hillsides caused by tunnel blasting depends on the distance between the blasting core and the angle between stress wave and vertical direction. Factors; The deep buried side of the hillside has smaller vibration velocity and lower frequency, while the shallow side is larger and has higher frequency, so it is necessary to compare the main frequency and vibration velocity of both sides to evaluate the vibration safety of the building. 2. The OMA modal test of typical two-story masonry building excited by blasting vibration is carried out, and the modal parameters (natural frequency) of two-story masonry building are studied by means of enhanced frequency-domain decomposition method and stochastic subspace method. Mode and damping; Based on the results of OMA modal test, the structural model of masonry building is established. The dynamic characteristics of the masonry building under the low-order integral mode and the high-order local mode are studied. The 1-5 natural frequency of the two-story masonry building is 8.80 ~ 24.99Hz. The natural frequency of 6-20 order is 26.10 ~ 36.34 Hz, and the vibration of the weak local member is larger. The natural frequencies of the two types of typical local members are 5.09-157.55Hz. the natural frequencies of local members are significantly higher than that of the whole building. The blasting vibration of the tunnel causes the strong dynamic response of the local members of the building. 3. The dynamic responses of typical two-story masonry structures under tunnel blasting are studied, and the characteristics of vibration velocity and displacement of buildings under tunnel blasting are revealed. The stress distribution and variation law of concrete and brick wall members. The vibration velocity and displacement amplitude of local members of masonry buildings are significantly larger than that of the whole. The dynamic response of the building under the action of tunnel blasting is mainly controlled by the instantaneous high stress rather than the displacement. With the increase of peak vibration velocity, the stress of the structure increases, and with the increase of the main frequency of vibration, the stress of the structure decreases. When the main frequency of blasting vibration is far from the low order natural frequency of the building, only vertical vibration can be considered, but the influence of horizontal vibration can be ignored. 4. The damage mechanism and cracking position of masonry building under tunnel blasting are studied. The damage assessment and evaluation method of masonry building under blasting vibration is put forward. The local members of masonry building are greatly affected by blasting vibration of tunnel, and when the peak vibration speed is larger, the stress level of local member is higher. Damage may lead to cracking; In addition, the stress concentration in corner, the contact between brick wall and concrete and the joint of precast floor are easy to crack under blasting vibration of tunnel. 5. The delay calculation method of the electronic detonator to realize the one-hole interval detonation is proposed. The principle of reducing peak vibration velocity and increasing main vibration frequency of electronic detonator with single hole interval initiation is studied. The delay of electronic detonator to realize single hole interval detonation need not less than the total time of single hole rock breakage and throwing displacement of 10cm. . The peak vibration velocity is lower than that of the detonation of the section charge, and the main frequency is higher than the detonation rate of the section charge, and it is close to the vibration velocity and the main frequency of the detonation of the single hole explosive quantity respectively.
【學位授予單位】:北京交通大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:U455.6;TU364
【參考文獻】
相關(guān)期刊論文 前10條
1 李永梅,孫國富;砌體房屋的爆破地震破壞機理和模型[J];北京工業(yè)大學學報;2001年01期
2 范磊,沈蔚;爆破振動頻譜特性實驗研究[J];爆破;2001年04期
3 田運生;李戰(zhàn)軍;汪旭光;于亞倫;;爆破開挖基坑地震波的頻譜特征[J];爆破;2005年04期
4 唐飛勇;王家忠;崔正榮;梁開水;;能量判據(jù)在爆破振動安全中的應用初探[J];爆破;2009年04期
5 肖望;周紹武;王愛興;吳新霞;;裂隙結(jié)構(gòu)面對爆破振動速度傳播規(guī)律的影響分析[J];爆破;2010年01期
6 陳慶凱;屠曉利;李貴臣;劉小波;;砂土層中爆破地震波傳播特性研究[J];爆破器材;2007年02期
7 申永康;邵建華;陳建鋒;;建筑結(jié)構(gòu)爆破地震反應彈塑性精細時程分析[J];爆炸與沖擊;2008年01期
8 魏海霞;陳士海;;爆破地震波三要素對多層砌體結(jié)構(gòu)彈塑性地震響應的影響[J];爆炸與沖擊;2011年01期
9 楊年華;張樂;;爆破振動波疊加數(shù)值預測方法[J];爆炸與沖擊;2012年01期
10 于海英,于雙久;工程爆破場地地震動強度預測研究[J];地震工程與工程振動;2004年01期
相關(guān)博士學位論文 前2條
1 魏海霞;爆破地震波作用下建筑結(jié)構(gòu)的動力響應及安全判據(jù)研究[D];山東科技大學;2010年
2 李洪濤;基于能量原理的爆破地震效應研究[D];武漢大學;2007年
,本文編號:1384252
本文鏈接:http://sikaile.net/jingjilunwen/jianzhujingjilunwen/1384252.html