基于VaR對商業(yè)銀行β系數的測算研究
[Abstract]:The 尾 coefficient plays an important role in both the CAPM model and the risk management system. And in the empirical aspect also rarely subdivides to each industry. Based on this, in order to make the 尾 coefficient more pertinence, reliability and practicability, this paper subdivides the scope of the research into Chinese commercial banks, and chooses 16 listed commercial banks as the research object in the empirical part. In the estimation model, the VaR- 尾 model proposed by Yao Jing, Yuan Zijia, Li Zhongfei and Li Duan (2009) is selected. In selecting the estimation method of VaR- 尾 model, this paper draws lessons from one of the three methods proposed by Yao Jing, Yuan Zijia, Li Zhongfei and Li Duan, which is the nuclear density estimation method. After calculating the VaR- 尾 coefficient of each commercial bank, Compared with the traditional 尾 coefficient, the advantages and disadvantages of VaR- 尾 model in the value assessment and risk management of commercial banks in China are obtained. The VaR- 尾 model selected in this paper is the VaR- 尾 value calculated under the kernel density estimation method, but the kernel density estimation is not sensitive to the choice of the kernel density function. In other words, this paper does not consider the distribution characteristics of the return series when calculating the VaR- 尾 value, and calculates the VaR- 尾 value with the real characteristics of the data, which reduces the estimation error fundamentally. In addition, because the VaR- 尾 value calculated in this paper depends on the confidence level to a great extent, therefore, for the enterprise, it can be based on the investor sentiment in the market, its own operating condition and its risk bearing ability. Accurately determine the confidence level 偽, keep the capital of the enterprise at the minimum cost and evaluate the value of its own enterprise accurately; For investors in the market, before making investment decisions, according to the whole market situation of the enterprise, the enterprise's operating condition, risk tolerance ability and its own risk preference, the confidence level 偽 is determined. Finally, the VaR- 尾 value of the enterprise is determined to obtain the enterprise value which accords with its investment preference.
【學位授予單位】:首都經濟貿易大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F224;F832.33
【參考文獻】
相關期刊論文 前10條
1 胡蓓蓓;宗剛;;非參數核密度估計在異方差模型中的應用[J];數量經濟技術經濟研究;2014年10期
2 居爾寧;王輝;徐曉陽;;商業(yè)銀行系統(tǒng)風險β值研究——以華夏銀行為例[J];會計之友;2013年24期
3 郭衛(wèi)東;;中國上市銀行的系統(tǒng)性風險貢獻測度及其影響因素——基于MES方法的實證分析[J];金融論壇;2013年02期
4 白彩全;;金融危機背景下銀行類股票β值及其穩(wěn)定性的實證檢驗[J];經濟研究導刊;2012年11期
5 江濤;;基于GARCH與半參數法VaR模型的證券市場風險的度量和分析:來自中國上海股票市場的經驗證據[J];金融研究;2010年06期
6 黃文彬;鄭振龍;;基于高階矩的金融資產定價和配置[J];福州大學學報(哲學社會科學版);2010年01期
7 周蕓鋒;吳雁;;國內外β系數相關特性研究綜述[J];財會通訊;2009年30期
8 姚京;袁子甲;李仲飛;李端;;VaR風險度量下的β系數:估計方法和實證研究[J];系統(tǒng)工程理論與實踐;2009年07期
9 張雯;靳軍會;劉強強;;滬市CAPM模型的實證分析[J];福建商業(yè)高等?茖W校學報;2008年04期
10 羅登躍;王春峰;房振明;;深圳股市時變Beta、條件CAPM實證研究[J];管理工程學報;2007年04期
相關碩士學位論文 前10條
1 聞才喜;基于神經網絡分位數回歸及核密度估計的概率密度預測方法研究[D];合肥工業(yè)大學;2015年
2 任曉萍;基于CAPM-GARCH-M模型對β系數的估計研究[D];南京大學;2014年
3 王艷朝;股票市場收益率高階矩的動態(tài)特征研究[D];山東大學;2014年
4 李世元;一種基于高階矩的金融危機預測方法[D];山東大學;2014年
5 劉顏榮;基于CoVaR方法測度我國證券業(yè)系統(tǒng)性風險[D];廈門大學;2014年
6 程麗娟;基于CoVaR方法的商業(yè)銀行系統(tǒng)性風險度量[D];山西財經大學;2013年
7 馬崢;中國證券市場中Beta系數預測之實證研究[D];上海交通大學;2010年
8 單娟;我國股票預期β系數與會計變量相關性的實證研究[D];華東交通大學;2009年
9 宋薇;我國上市銀行系統(tǒng)性風險預測研究[D];中國海洋大學;2009年
10 馬慶琰;基于CAPM對上市公司β值的調整[D];西南財經大學;2008年
,本文編號:2352365
本文鏈接:http://sikaile.net/jingjilunwen/huobiyinxinglunwen/2352365.html