基于投資者情緒的多因素資產(chǎn)定價(jià)模型設(shè)計(jì)及實(shí)證分析
[Abstract]:With the vigorous development of behavioral finance, investor sentiment has been paid more and more attention. This paper mainly studies investor sentiment and the pricing model of emotional assets. We put forward a set of methods to construct complex investor sentiment index, and show that this method can establish good emotion index. Furthermore, using this indicator as an emotional factor and introducing CAPM and FF three-factor model can improve the existing asset pricing model. First of all, this paper defines the emotional indicators and explains the original emotional indicators. Emotional indicators can be divided into two categories, one is an indicator of investor sentiment, the other is an index that affects investor sentiment. Investor sentiment is a gray box, the index that affects investor sentiment is input item, the index that reflects investor sentiment is output item. This paper focuses on the indicators that reflect investor sentiment, such as turnover rate, closed-end fund discount rate and so on, which are the original data of constructing compound emotion index. At the same time, this paper also established a set of evaluation system to judge the merits and demerits of emotional indicators. Excellent emotional indicators need to be related to the trend of stock prices, and the changes of emotional indicators need to have an impact on stock returns, and also need to be robust. Then, we establish a state space model to calculate the composite investor sentiment index. Because the parameters in the model are unknown, it is necessary to transform the model into an adaptive system identification problem, that is, the nonlinear state space model, and then use extended Kalman filter to solve the problem. Although principal component analysis (PCA) and TOPSIS method can also be used to construct composite emotional indicators, the state space model method has stronger causality to stock price trend, stronger causality to stock return and better robustness. Therefore, compared with the emotional indexes constructed by principal component analysis and TOPSIS method, the state space model method is the best one. Finally, this paper introduces the composite investor sentiment index into the existing asset pricing model. We find that adding emotional factors to the CAPM or FF three-factor model can decrease AIC, increase the resolution coefficient and improve the goodness of fit. At the same time, the asset pricing model with emotion has stronger predictive ability. When the original single or three factors of the asset pricing model explain the yield, there are still some parts that can not be explained. The introduction of the emotion factor will give some reasonable explanation to the unexplained factor. This shows that the introduced emotional factor is effective, it can improve the existing asset pricing model.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:C912.6;F832.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 鹿坪;姚海鑫;;機(jī)構(gòu)持股、投資者情緒與應(yīng)計(jì)異象[J];管理評(píng)論;2016年11期
2 巴曙松;朱虹;;融資融券、投資者情緒與市場(chǎng)波動(dòng)[J];國(guó)際金融研究;2016年08期
3 謝太峰;高藝;;投資者情緒對(duì)我國(guó)創(chuàng)業(yè)板IPO溢價(jià)影響研究[J];金融理論與實(shí)踐;2016年04期
4 黃虹;張恩煥;孫紅梅;劉江會(huì);;融資融券會(huì)加大投資者情緒對(duì)股指波動(dòng)的影響嗎?[J];中國(guó)軟科學(xué);2016年03期
5 孟衛(wèi)東;張夢(mèng)雨;陸靜;;基于投資者情緒的AH股條件資產(chǎn)定價(jià)研究[J];重慶大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2016年02期
6 沈藝峰;;資本資產(chǎn)定價(jià)五因子模型:演變與未來(lái)研究方向[J];財(cái)務(wù)研究;2015年06期
7 池麗旭;張廣勝;莊新田;宋大雷;;投資者情緒指標(biāo)與股票市場(chǎng)——基于擴(kuò)展卡爾曼濾波方法的研究[J];管理工程學(xué)報(bào);2012年03期
相關(guān)博士學(xué)位論文 前2條
1 王鎮(zhèn);投資者情緒對(duì)中國(guó)股市收益影響的實(shí)證研究[D];東北財(cái)經(jīng)大學(xué);2015年
2 高大良;投資者情緒及其對(duì)股票市場(chǎng)收益的影響研究[D];湖南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前2條
1 宋艷西;投資者情緒對(duì)股票收益的影響[D];西南財(cái)經(jīng)大學(xué);2014年
2 楊興;四因素定價(jià)模型在中國(guó)股票市場(chǎng)的實(shí)證研究[D];湖南大學(xué);2008年
,本文編號(hào):2281775
本文鏈接:http://sikaile.net/jingjilunwen/huobiyinxinglunwen/2281775.html