天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于BP神經(jīng)網(wǎng)絡(luò)的小額信貸信用風險評估研究

發(fā)布時間:2018-07-20 16:35
【摘要】:小額信貸最初的目的是扶貧,后來服務(wù)的對象變得更加廣泛并逐漸轉(zhuǎn)向商業(yè)化。從20世紀70年代開始,小額信貸從無到有,逐漸發(fā)展壯大。在經(jīng)濟發(fā)展中,小額信貸起到了重要作用。與此同時,在小額信貸快速發(fā)展的背后也蘊含了多種風險,信用風險便是其中之一。信用風險是指借款人在到期日無法償還貸款或者不愿償還貸款而給放款人造成損失的風險。對小額貸款信用風險評估的準確性高低關(guān)乎小額借貸行業(yè)發(fā)展的好壞。本文對小額信貸的概念進行了詳細闡述,并對相關(guān)理論進行了梳理。在對相關(guān)信用風險評估模型進行比較后,最終選擇BP神經(jīng)網(wǎng)絡(luò)模型作為本文評估小額信貸信用風險的模型。BP神經(jīng)網(wǎng)絡(luò)模型有強大的學習和推理能力,能夠處理非線性關(guān)系,仿真能力強,這些優(yōu)點正是本文評估小額信貸信用風險所需要的。在參考已有文獻的基礎(chǔ)上,本研究在信用風險評估指標體系建設(shè)和BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計上進行了創(chuàng)新。之后,利用本文獲取的數(shù)據(jù)建立BP神經(jīng)網(wǎng)絡(luò)模型,得到了較為理想的結(jié)果。并且,本研究所得到的BP神經(jīng)網(wǎng)絡(luò)模型得到了業(yè)界人士的認可,可以為小額信貸信用風險評估提供參考。本文得出的結(jié)論是:(1)小額信貸最初是出于扶貧的目的而誕生,在后來的發(fā)展中逐漸由扶貧性轉(zhuǎn)向商業(yè)化;(2)信用風險是小額信貸的主要風險之一,降低信用風險可從減少信息不對稱、建立違約懲罰機制和增強借款人風險控制能力入手;(3)在小額信貸信用風險評估中,BP神經(jīng)網(wǎng)絡(luò)模型有一些獨特的優(yōu)勢;(4)本文通過對小額信貸信用風險評估做實證分析,發(fā)現(xiàn)本研究中所建立的模型對違約預(yù)測的正確率要高于對不違約所做的預(yù)測正確率。針對小額信貸信用風險評估問題,本文提出的可行對策有:(1)完善征信體系建設(shè),降低信息不對稱;(2)建立小額信貸違約懲罰機制;(3)增強借款人信用意識,提高其風控能力;(4)完善小額信貸信用風險評估體系;(5)改進BP神經(jīng)網(wǎng)絡(luò)模型。
[Abstract]:Microfinance was originally intended to help the poor, but later became more widespread and gradually commercialized. Since the 1970 s, microfinance has grown from scratch. In economic development, microfinance played an important role. At the same time, there are many risks behind the rapid development of microfinance, and credit risk is one of them. Credit risk refers to the risk that the borrower is unable to repay the loan on the maturity date or is unwilling to repay the loan, thus causing losses to the lender. The accuracy of credit risk assessment of small loans is related to the development of microfinance industry. In this paper, the concept of microfinance is described in detail, and related theories are combed. After comparing the relevant credit risk assessment models, the BP neural network model is chosen as the model to evaluate the microcredit credit risk. The BP neural network model has strong learning and reasoning ability, and can deal with the nonlinear relationship. The simulation ability is strong, these advantages are exactly what this article needs to evaluate the microcredit credit risk. On the basis of reference to the existing literatures, this study innovates in the construction of credit risk assessment index system and the design of BP neural network structure. Then, the BP neural network model is established by using the data obtained in this paper, and the ideal results are obtained. In addition, the BP neural network model obtained in this paper has been recognized by the industry, which can provide a reference for the credit risk assessment of micro-credit. The conclusions of this paper are as follows: (1) Microcredit was first born for the purpose of poverty alleviation and gradually changed from poverty alleviation to commercialization in later development; (2) Credit risk is one of the main risks of microcredit. Reducing credit risk can begin by reducing information asymmetry, Establishing default penalty mechanism and enhancing borrower's risk control ability; (3) BP neural network model has some unique advantages in microcredit credit risk assessment; (4) this paper makes empirical analysis on microfinance credit risk assessment. It is found that the prediction accuracy of the model is higher than that of non-default prediction. In view of the problem of credit risk assessment of micro-credit, the feasible countermeasures proposed in this paper are as follows: (1) to improve the construction of credit system and reduce the information asymmetry; (2) to establish a penalty mechanism for microcredit default; (3) to enhance the borrower's credit consciousness. Improve its ability of wind control; (4) improve the credit risk assessment system of microcredit; (5) improve the BP neural network model.
【學位授予單位】:云南財經(jīng)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP183;F832.4

【參考文獻】

相關(guān)期刊論文 前10條

1 徐云松;;近期小額信貸發(fā)展的一個研究述評[J];技術(shù)經(jīng)濟與管理研究;2013年04期

2 呂文棟;肖楊;趙楊;;小額貸款公司中小企業(yè)法人客戶信用風險評估研究[J];科學決策;2012年08期

3 姚淑瓊;強俊宏;;基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)戶小額信貸信用風險評估研究[J];西北農(nóng)林科技大學學報(社會科學版);2012年02期

4 李連恒;楊毅;;對我國小額貸款公司創(chuàng)新發(fā)展的思考[J];商業(yè)會計;2011年24期

5 黎月紅;徐藝心;;我國小企業(yè)貸款應(yīng)用信用評分技術(shù)的研究[J];區(qū)域金融研究;2010年12期

6 汪莉;阮應(yīng)國;;基于信用評分的銀行中小企業(yè)信貸政策建議[J];合作經(jīng)濟與科技;2010年20期

7 劉暉;;農(nóng)村信用合作社小額信貸的風險與防范[J];當代經(jīng)濟;2008年10期

8 李明賢;李學文;;孟加拉國小額信貸發(fā)展的宏觀經(jīng)濟基礎(chǔ)及中國小額信貸的發(fā)展[J];農(nóng)業(yè)經(jīng)濟問題;2008年09期

9 孫若梅;;小額信貸對農(nóng)民收入影響的實證分析[J];貴州社會科學;2008年09期

10 顏廷軍;楊旭光;;打造小額信貸的支農(nóng)營銷網(wǎng)絡(luò)——山東省濰坊市案例[J];中國金融;2008年07期

相關(guān)碩士學位論文 前6條

1 吳影;小額貸款公司客戶信用風險評估研究[D];哈爾濱工業(yè)大學;2016年

2 蔡靜雯;基于神經(jīng)網(wǎng)絡(luò)的Z小額貸款公司客戶信用風險評價研究[D];南京航空航天大學;2016年

3 黃震;基于BP神經(jīng)網(wǎng)絡(luò)模型的中國P2P借款人信用風險評估研究[D];北京交通大學;2015年

4 覃冰;基于人工神經(jīng)網(wǎng)絡(luò)模型的X縣農(nóng)村信用社信貸風險評估[D];湖南大學;2012年

5 易輝;基于神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行農(nóng)業(yè)信貸風險評估研究[D];湖南大學;2012年

6 馬文勤;基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)戶小額信貸信用風險評估研究[D];西北農(nóng)林科技大學;2010年

,

本文編號:2134116

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/huobiyinxinglunwen/2134116.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9f62b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com