煤炭行業(yè)發(fā)債企業(yè)信用風險影響因素研究
本文選題:煤炭行業(yè) + 發(fā)債企業(yè)。 參考:《北京交通大學》2017年碩士論文
【摘要】:2015年,26家上市的煤炭企業(yè)只取得15.43億元凈利潤,同比驟跌超過95%。其中有11家出現(xiàn)虧損,占比高達四成,煤炭行業(yè)呈整體虧損局面。2016年開始觸底反彈,但情況仍然不容樂觀。同時,銀行對煤炭行業(yè)的企業(yè)授信開始縮緊,煤炭行業(yè)大部分企業(yè)融資渠道受限,資金面緊張。2014-2016年,中國債市爆發(fā)違約事件,剛性兌付神話不再,大眾開始真正關注信用風險,以探求信用風險的影響因素,通過因素的數(shù)據(jù)分析,對債券或企業(yè)信用風險進行提前預測,以進行合理投資或提前采取措施減少損失。煤炭行業(yè)境況不樂觀,同時作為違約債券主體中占比較大行業(yè),受到投資者和債權人關注。因此,研究煤炭行業(yè)發(fā)債企業(yè)信用風險具有現(xiàn)實意義。本文通過地區(qū)宏觀經(jīng)濟水平、地區(qū)財政實力以及地區(qū)行業(yè)水平對煤炭行業(yè)發(fā)債企業(yè)信用風險進行宏觀層面成因分析,從企業(yè)性質(zhì)、信用評級以及企業(yè)的財務狀況進行微觀層面成因分析。本文以2016年具有存量債券的85家煤炭行業(yè)發(fā)債企業(yè)作為樣本,并根據(jù)現(xiàn)代信用風險定義,將樣本分為包括23家樣本企業(yè)的發(fā)生信用風險事件組和包括62家樣本企業(yè)的未發(fā)生信用風險事件組。在成因分析基礎上,分別從宏觀層面選取5個指標和微觀層面選取10個指標,對各指標進行相關性分析,剔除具有共線性解釋變量。之后利用Logistic模型對煤炭行業(yè)發(fā)債企業(yè)的信用風險影響因素進行實證分析,并得到預測煤炭行業(yè)發(fā)債企業(yè)信用風險大小的方程。通過實證分析,最后顯示宏觀層面的地區(qū)CPI及地區(qū)固定資產(chǎn)投資價格指數(shù)以及微觀層面信用評級、總資產(chǎn)報酬率、總資產(chǎn)周轉(zhuǎn)率、資產(chǎn)負債率以及流動資產(chǎn)與總資產(chǎn)的比率共7個指標對煤炭行業(yè)發(fā)債企業(yè)信用風險具有顯著影響。其中,資產(chǎn)負債率、流動資產(chǎn)與總資產(chǎn)的比率對煤炭行業(yè)發(fā)債企業(yè)信用風險具有正相關影響,即該值越低,煤炭行業(yè)發(fā)債企業(yè)發(fā)生信用風險事件可能性越低。其余指標對煤炭行業(yè)發(fā)債企業(yè)信用風險產(chǎn)生負方向影響,即指標數(shù)值越低,煤炭行業(yè)發(fā)債企業(yè)信用風險事件發(fā)生可能性越高。通過以上7個指標,本文生成預測煤炭行業(yè)發(fā)債企業(yè)信用風險大小的方程,其預測正確率達到89.4%,具有實用價值?蓭椭顿Y者提前預測煤炭行業(yè)發(fā)債企業(yè)信用風險大小,協(xié)助企業(yè)債權人、投資者以及管理者對企業(yè)未來信用風險進行判斷。
[Abstract]:In 2015, 26 listed coal companies made only 1.543 billion yuan in net profits, down more than 95 percent from a year earlier. Eleven of them lost money, or as much as 40 percent, with the coal industry as a whole losing money. A bottoming out in 2016 is still not encouraging. At the same time, banks began to tighten credit to enterprises in the coal industry, and most of the enterprises in the coal industry were restricted in their financing channels. During the period 2014-2016, when China's bond market defaulted, the myth of rigid payment ceased, and the public began to pay real attention to credit risks. By exploring the influencing factors of credit risk and analyzing the data of the factors, the paper forecasts the credit risk of bond or enterprise in advance, so as to make reasonable investment or take measures to reduce the loss ahead of time. The coal sector is not optimistic, and as the main body of defaulting bonds, the larger sector, investors and creditors are concerned. Therefore, it is of practical significance to study the credit risk of bond issuing enterprises in coal industry. Based on the regional macroeconomic level, regional financial strength and regional industry level, this paper analyzes the causes of the credit risk of the coal industry bond issuing enterprises at the macro level, and analyzes the nature of the enterprises from the point of view of the nature of the enterprises. Credit rating and the financial situation of enterprises are analyzed at the micro level. This paper takes 85 coal industry bond issuers with stocks of bonds in 2016 as a sample, and defines the credit risk according to the modern credit risk definition. The samples are divided into two groups: the occurrence of credit risk event group which includes 23 sample enterprises and the non-occurrence credit risk event group which includes 62 sample enterprises. On the basis of cause analysis, 5 indexes were selected from macro level and 10 indexes were selected from micro level, and the correlation of each index was analyzed, and the co-linear explanatory variables were eliminated. Then the Logistic model is used to analyze the influencing factors of the credit risk of the bond issuing enterprises in coal industry, and the equation of predicting the credit risk of the bond issuing enterprises in the coal industry is obtained. Through the empirical analysis, it shows that the regional CPI and regional fixed asset investment price index, as well as the micro-level credit rating, total asset return rate, total asset turnover rate, The ratio of assets to liabilities and the ratio of current assets to total assets have a significant impact on the credit risk of bond issuing enterprises in coal industry. Among them, the ratio of assets and liabilities, the ratio of current assets to total assets has a positive correlation with the credit risk of bond issuing enterprises in coal industry, that is, the lower the value, the lower the probability of credit risk events. The other indicators have a negative impact on the credit risk of the bond issuing enterprises in coal industry, that is, the lower the index value, the higher the probability of the credit risk events of the bond issuing enterprises in the coal industry. Through the above seven indexes, this paper generates the equation of predicting the credit risk of the bond issuing enterprises in the coal industry, and its correct rate of prediction is up to 89.4, which is of practical value. It can help investors predict the credit risk of bond issuing enterprises in the coal industry in advance, and help the creditors, investors and managers to judge the future credit risk of enterprises.
【學位授予單位】:北京交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F426.21;F832.51
【參考文獻】
相關期刊論文 前10條
1 任婉馨;;中國債券市場信用違約風險的成因分析[J];清華金融評論;2016年10期
2 蔣恒;杜立輝;;我國債券市場違約成因分析及未來信用狀況展望[J];債券;2016年05期
3 蔣_g;高瑜;;基于KMV模型的中國上市公司信用風險評估研究[J];中央財經(jīng)大學學報;2015年09期
4 龐瑩;王永馨;;企業(yè)生命周期對信用風險影響的實證分析——基于中國汽車制造業(yè)的數(shù)據(jù)[J];財會月刊;2015年14期
5 宋佳佳;;我國城投債信用違約風險的實證分析[J];時代金融;2015年09期
6 趙振華;;關于產(chǎn)能過剩問題的思考[J];中共中央黨校學報;2014年01期
7 李關政;;基于MF-Logistic模型的銀行信用風險壓力測試[J];金融理論與實踐;2012年01期
8 呂曉燕;倪慶東;朱煒;;我國上市公司商業(yè)信用影響因素實證研究——基于采掘業(yè)的分析[J];東岳論叢;2011年10期
9 湯婷婷;方兆本;;商業(yè)銀行信用風險與宏觀經(jīng)濟——基于壓力測試的研究[J];當代經(jīng)濟科學;2011年04期
10 劉迎春;;基于Logistic回歸的中國上市公司信用風險度量研究[J];黑龍江對外經(jīng)貿(mào);2010年11期
相關碩士學位論文 前1條
1 胡玄良;企業(yè)信用內(nèi)部影響因素研究[D];中南大學;2013年
,本文編號:1867247
本文鏈接:http://sikaile.net/jingjilunwen/huobiyinxinglunwen/1867247.html