基于商品特征挖掘的在線評(píng)論有用性分類研究
[Abstract]:With the rapid development of e-commerce, more and more consumers are used to online shopping. After buying, consumers can comment on the goods they buy. These comments are not only feedback from consumers to sellers, but also provide advice and guidance to other consumers. The hot sale of goods means a large increase in commodity reviews. Tens of thousands of comments on some popular goods make it difficult for sellers and buyers to deal with them, which requires both parties to quickly screen useful comments from a large number of commodity reviews and extract useful information from a large number of redundant information that can really guide sales and purchase. The urgent need for useful information in massive online reviews has led researchers at home and abroad to pay attention to a specific application field of comment mining-comment usefulness classification. Considering the fact that major e-commerce websites are generally unable to provide comprehensive comment information, this study provides a reference for the selection of useful classification features through commodity feature mining from the review content itself and commodity feature information. In order to make full use of massive reviews, this study uses semi-supervised learning to train the classification model, and finally obtains a useful review classification model with excellent performance. Firstly, this paper studies the shortcomings of the existing commodity feature mining methods, improves effectively from the aspects of word segmentation, pruning and feature selection, and finally obtains the optimized results of commodity feature mining. On this basis, it deeply studies the influencing factors of the usefulness of the review, and adds the commodity feature information as an important reference factor to the useful classification feature set. Finally, the semi-supervised learning is carried out by using the direct support vector machine, which is an important extension of support vector machine, and the semi-supervised classification model of the usefulness of online comments is trained by using tagged comments and untagged comments. The results show that the classification model is superior to the traditional supervised learning model, and has a better performance under the condition of only considering the content information of the review, which shows that the commodity characteristic information is an important factor affecting the usefulness of the review, and semi-supervised learning can effectively improve the classification results.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:F724.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 苗蕊;;在線評(píng)論有用性研究綜述[J];中國(guó)管理信息化;2014年18期
2 郗亞輝;;產(chǎn)品評(píng)論特征及觀點(diǎn)抽取研究[J];情報(bào)學(xué)報(bào);2014年03期
3 閆強(qiáng);孟躍;;在線評(píng)論的感知有用性影響因素——基于在線影評(píng)的實(shí)證研究[J];中國(guó)管理科學(xué);2013年S1期
4 李宗偉;張艷輝;;體驗(yàn)型產(chǎn)品與搜索型產(chǎn)品在線評(píng)論的差異性分析[J];現(xiàn)代管理科學(xué);2013年08期
5 廖成林;蔡春江;李憶;;電子商務(wù)中在線評(píng)論有用性影響因素實(shí)證研究[J];軟科學(xué);2013年05期
6 殷國(guó)鵬;;消費(fèi)者認(rèn)為怎樣的在線評(píng)論更有用?——社會(huì)性因素的影響效應(yīng)[J];管理世界;2012年12期
7 殷國(guó)鵬;劉雯雯;祝珊;;網(wǎng)絡(luò)社區(qū)在線評(píng)論有用性影響模型研究——基于信息采納與社會(huì)網(wǎng)絡(luò)視角[J];圖書(shū)情報(bào)工作;2012年16期
8 嚴(yán)建援;張麗;張蕾;;電子商務(wù)中在線評(píng)論內(nèi)容對(duì)評(píng)論有用性影響的實(shí)證研究[J];情報(bào)科學(xué);2012年05期
9 王平;代寶;;消費(fèi)者在線評(píng)論有用性影響因素實(shí)證研究[J];統(tǒng)計(jì)與決策;2012年02期
10 史偉;王洪偉;;在線產(chǎn)品評(píng)論檢索系統(tǒng)研究[J];情報(bào)雜志;2011年09期
相關(guān)碩士學(xué)位論文 前3條
1 林先杰;在線評(píng)論有用性影響因素研究[D];華南理工大學(xué);2014年
2 金麗君;基于SVM的搜索型商品評(píng)論有用性自動(dòng)識(shí)別方法研究[D];哈爾濱工業(yè)大學(xué);2013年
3 石旭;體驗(yàn)型產(chǎn)品評(píng)論有用性研究[D];華中科技大學(xué);2011年
,本文編號(hào):2503059
本文鏈接:http://sikaile.net/jingjilunwen/guojimaoyilunwen/2503059.html