基于超網(wǎng)絡(luò)的企業(yè)微博粉絲興趣挖掘
[Abstract]:Weibo is a new media product developed from Web2.0 technology. It is a kind of social network platform for information dissemination and sharing. In daily life, the spread of topics, hot issues and network product sales more and more inseparable from Weibo. In recent years, scholars at home and abroad began to study Weibo, published a rapid increase in the number of documents, but also attracted many other fields of researchers to join. However, at present, Weibo's research is still in the stage of development, research methods and content is not yet mature. Due to Weibo's increasing amount of data and rapid expansion of information, the ability of identifying Weibo information is also weakened. Weibo is the representative of virtual community, and the communication between users forms a complex system network with many nodes and complicated structure. General network can not completely express the relationship between users and topics. Therefore, it is necessary to establish a supernetwork to solve this problem of various topological properties. In this way, can completely depict two kinds of different points in Weibo, but also directly and aesthetically present. Fans, as a special group, often madly love something. Weibo fans are one of the online fans, if he "pay attention" to the Weibo Lord, become its fans. The more followers a Weibo has, the more likely it will be to see its message, the more influential it is, the more likely it is to be seen. We study the behavior of fans, which can improve the brand image of enterprises and Weibo marketing, but also let enterprises know the user's product experience. At present, there are few researches on fan behavior in China, and even less on Weibo fans. Firstly, this paper analyzes the current research situation of Weibo supernetwork, and puts forward three kinds of network structure, such as the topic content subnet of Weibo, the fan subnetwork and the enterprise Weibo supernetwork model oriented to fans' interest, using the existing supernetwork model for reference. Then, the topic of Weibo is divided into words, and five keywords are extracted from each piece of Weibo information, and then the topic is connected with the keyword. Fans through retweets or comments to participate in the discussion of Weibo topics, indirectly to establish a relationship with key words. Finally, this paper uses C language, build a platform framework to capture Sina Weibo data. The data is selected by China Mobile official Weibo data. At the same time, the keyword relationship network is constructed through the network model, and word frequency analysis, centrality analysis and condensed subgroup analysis are carried out to mine the core content of fans' interest, which verifies the validity of this model.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:G206;F713.55
【參考文獻】
相關(guān)期刊論文 前10條
1 王志平;周生寶;郭俊芳;王眾托;;基于變分不等式的網(wǎng)絡(luò)廣告資源分配的超網(wǎng)絡(luò)模型[J];大連海事大學(xué)學(xué)報;2007年04期
2 劉志明;劉魯;;微博網(wǎng)絡(luò)輿情中的意見領(lǐng)袖識別及分析[J];系統(tǒng)工程;2011年06期
3 王曉蘭;;2010年中國微博客研究綜述[J];國際新聞界;2011年01期
4 李明;;微博粉絲的形成、特點及其傳播意義[J];編輯之友;2014年04期
5 尚艷超;王恒山;王艷靈;;基于微博上信息傳播的超網(wǎng)絡(luò)模型[J];技術(shù)與創(chuàng)新管理;2012年02期
6 梁立明,謝彩霞;詞頻分析法用于我國納米科技研究動向分析[J];科學(xué)學(xué)研究;2003年02期
7 索紅光;劉玉樹;曹淑英;;一種基于詞匯鏈的關(guān)鍵詞抽取方法[J];中文信息學(xué)報;2006年06期
8 文坤梅;徐帥;李瑞軒;辜希武;李玉華;;微博及中文微博信息處理研究綜述[J];中文信息學(xué)報;2012年06期
9 鐘偉金;李佳;;共詞分析法研究(一)——共詞分析的過程與方式[J];情報雜志;2008年05期
10 武澎;王恒山;劉奇;石恒;;微博中突發(fā)事件信息發(fā)布者被“加關(guān)注”的閾值模型研究[J];情報雜志;2012年11期
相關(guān)博士學(xué)位論文 前1條
1 于洋;組織知識管理中的知識超網(wǎng)絡(luò)研究[D];大連理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 姜好;傳播學(xué)視角下的“粉絲”文化研究[D];江西師范大學(xué);2011年
2 李曉強;基于變分不等式的電子商務(wù)供應(yīng)鏈超網(wǎng)絡(luò)研究[D];大連海事大學(xué);2007年
3 周生寶;基于變分不等式的網(wǎng)絡(luò)廣告超網(wǎng)絡(luò)模型研究[D];大連海事大學(xué);2007年
4 張福梅;基于變分不等式的退貨供應(yīng)鏈超網(wǎng)絡(luò)模型研究[D];大連海事大學(xué);2008年
,本文編號:2406972
本文鏈接:http://sikaile.net/jingjilunwen/guojimaoyilunwen/2406972.html