基于多目標(biāo)粒子群算法的連鎖企業(yè)配送中心選址研究
[Abstract]:With the continuous development of social economy, chain enterprises have developed rapidly. Distribution center as the core link of chain enterprise logistics system, its location not only directly affects the overall economic benefits of the enterprise, but also gradually becomes the key to the core competitiveness of chain enterprise. Taking supermarket chain as an example, this paper studies the location problem of distribution center based on the total cost of logistics, service quality of distribution time and other related factors. First of all, this paper introduces the research background, significance, domestic and foreign research status and the overall research route. Then it introduces the theoretical basis of location selection, including the concept of distribution center, types, location principles and procedures, as well as the related factors of location. Secondly, according to the problems raised, the objective function (?) is obtained by taking account of the minimum total cost of logistics. And the objective function (?) of the best quality of distribution service is obtained, and the mathematical model of multi-objective location with constraints is established, and several classical methods to solve the multi-objective optimization model are introduced. An improved multi-objective particle swarm optimization algorithm is proposed to solve the location model. Thirdly, the basic particle swarm optimization algorithm and the multi-objective particle swarm optimization algorithm are introduced, and the multi-objective particle swarm optimization algorithm is improved to solve the multi-objective location problem with constraints in the multi-objective location model. Finally, the multi-objective location model established in chapter 3 is applied to the case of chain supermarket distribution center location. In this paper, we first use Lingo software to optimize the two objective functions to obtain two site-selection schemes of the model, and then, according to the improved multi-objective particle swarm optimization algorithm proposed in Chapter 4, we use Matlab software to calculate, and obtain a set of effective non-inferior solutions of the model. Then AHP is used to select a satisfactory site selection scheme from the non-inferior solution. Finally, according to the advantages and disadvantages of different alternatives of objective function value, the final site selection scheme is determined. This model can provide more comprehensive and reliable decision guidance for the location of logistics distribution center in chain enterprises.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18;F252;F721
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙海茹;陳玲;;改進(jìn)MOPSO在物流節(jié)點(diǎn)選址模型中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2016年12期
2 張R糭g;;連鎖超市配送中心選址文獻(xiàn)綜述[J];現(xiàn)代經(jīng)濟(jì)信息;2013年07期
3 張錦惠;陶經(jīng)輝;;國內(nèi)外物流園區(qū)研究評述及展望[J];中國市場;2011年23期
4 王振中;;層次分析法在配送中心選址中的研究與應(yīng)用[J];物流工程與管理;2010年01期
5 黃芬;李自立;;基于AHP和GP模型的配送中心選址決策問題研究[J];黑龍江科技信息;2009年19期
6 鄧汝春;;服裝配送中心的設(shè)計(jì)與規(guī)劃研究[J];中國市場;2009年15期
7 鄭志成;劉心;;灰色關(guān)聯(lián)度和AHP在冷鏈物流配送中心選址問題中的應(yīng)用研究[J];科學(xué)技術(shù)與工程;2009年05期
8 賓厚;單圣滌;;物流配送中心選址模型及其算法分析[J];中國流通經(jīng)濟(jì);2008年07期
9 李中凱;譚建榮;馮毅雄;方輝;;基于擁擠距離排序的多目標(biāo)粒子群優(yōu)化算法及其應(yīng)用[J];計(jì)算機(jī)集成制造系統(tǒng);2008年07期
10 周晨希;龔花萍;;基于模糊綜合評判的物流中心評估[J];內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào)(社會科學(xué)版);2007年05期
相關(guān)博士學(xué)位論文 前1條
1 孫兵;物流領(lǐng)域若干關(guān)鍵問題研究[D];天津大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 王婷;A連鎖超市新增配送中心選址問題研究[D];北京交通大學(xué);2016年
2 張R糭g;YG連鎖超市配送中心選址研究[D];南京理工大學(xué);2013年
3 管婷婷;多目標(biāo)粒子群算法在物流配送中的應(yīng)用研究[D];南昌大學(xué);2012年
4 李明;基于遺傳算法的鋼材配送中心選址研究[D];南京財(cái)經(jīng)大學(xué);2012年
5 魏益民;配送中心選址模型及其應(yīng)用問題研究[D];上海交通大學(xué);2011年
6 尹慶君;電子商務(wù)物流企業(yè)運(yùn)營管理問題的研究[D];復(fù)旦大學(xué);2011年
7 尚玲;物流配送中心選址模型及方法研究[D];青島大學(xué);2010年
8 張濤;基于層次分析法的物流中心選址研究[D];武漢科技大學(xué);2008年
9 陳在長;多目標(biāo)自營型配送中心選址問題研究[D];大連海事大學(xué);2008年
10 程天成;物流園區(qū)規(guī)劃方法及配套政策研究[D];吉林大學(xué);2008年
,本文編號:2166407
本文鏈接:http://sikaile.net/jingjilunwen/guojimaoyilunwen/2166407.html