高并發(fā)下的全國零售戶信息采集和應用
[Abstract]:Up to now, the number of retail customers facing the enterprise has exceeded 9 million. With the deepening of information and data, it is imperative to collect data and information of retail customers. Facing 9 million users, the problem is that the amount of access to the server is rising rapidly and the amount of data is exploding. It is obviously not a good way to solve the problem of a large number of concurrent requests and large data processing, which is obviously not a very good solution. This article analyzes and compares the traditional data collection mode and enterprise business by analyzing and comparing the problems of large number of concurrent requests and large data processing. Type, a data acquisition model based on mobile terminal is designed, and the data acquisition model is analyzed in detail. In order to meet the requirements of the enterprise and the needs of the users, the load balancing scheduling strategy is further analyzed and studied for the problems of high concurrency and large data processing in the new collection mode. On the basis of the multi time chip polling scheduling mechanism, the dynamic adjustment load balancing algorithm based on the task request prediction is proposed. The algorithm is further adjusted and improved by analyzing the multidimensional Markov chain and queuing theory. The algorithm improves the performance and negative effect of the whole system. The specific research contents are as follows: 1) in this paper, a new data acquisition model based on the distributed strategy is designed by comparing the traditional data acquisition methods, according to the business types and data request features of the current enterprise. This model takes APP and WeChat enterprise number as the entrance of data collection, and sets up a server cluster for high concurrency services. The data center is created using the strategy based on the Hadoop platform, and the data are analyzed and processed. The model is optimized for the type of business and the nature of the data submitted by the national retail customers, and the high level structure and technical points in the model system are put forward. In the concurrent environment, how to efficiently schedule task requests and adjust the load of server nodes, and analyze and solve.2 in the later text, the scheduling algorithm based on CPU and MEM is deeply studied. According to the characteristics of the actual task request, the load balancing scheduling algorithm based on the prediction machine is improved and proposed. Collect the load of other nodes, predict the type of service and the rate of arrival of the network request, dynamically adjust the request distribution, reduce the waiting time of the request, shorten the idle time of the server, achieve the effective utilization of the resource, and finally make the whole load of the system reach the balance state. The inter aspect has good performance and is better than the scheduling algorithm based on CPU and MEM). In view of the shortcomings of the load balancing algorithm based on the prediction mechanism, using the knowledge of queuing theory, it optimizes the load of the network server and arranges the waiting, processing and hanging up. By analyzing multidimensional Ma. The mechanism of rkov predicts the characteristics and connections of the subsequent network requests. Through the analysis of the multi time slice polling strategy, a prediction based Markov queuing model is proposed. Through the experimental verification and analysis, the model is better to coordinate the load status of each server node, to distribute the following network requests reasonably, and to reduce the response time.4). According to the data collection model and the load balancing technology, a set of data collection system is set up, which sets the data collection platform of the mobile terminal, the business processing platform and the data processing platform. The load balancing technology is applied to the data processing, and the time for the server to deal with the data is speeded up, and the design of the data acquisition system is demonstrated. The present results.
【學位授予單位】:浙江理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F724.2
【參考文獻】
相關期刊論文 前10條
1 王小戲;吳剛;王灝;;高并發(fā)高可用零售O2O交易系統(tǒng)的架構設計與業(yè)務實現(xiàn)[J];計算機與現(xiàn)代化;2016年04期
2 林偉;丁志剛;;基于Agent的微信平臺自適應負載均衡算法[J];實驗技術與管理;2015年12期
3 喜藝;;Hadoop大數(shù)據(jù)平臺與傳統(tǒng)數(shù)據(jù)倉庫的協(xié)作探究[J];通訊世界;2015年17期
4 本刊編輯部;石菲;邢帆;孫杰賢;姜紅德;;“兩會”關鍵熱點:信息化新階段[J];中國信息化;2015年03期
5 王輝;李晉光;;異構網(wǎng)絡負載均衡算法[J];工業(yè)儀表與自動化裝置;2014年05期
6 蘇金樹;郭文忠;余朝龍;陳國龍;;負載均衡感知的無線傳感器網(wǎng)絡容錯分簇算法[J];計算機學報;2014年02期
7 黃素萍;葛萌;;Hadoop平臺在大數(shù)據(jù)處理中的應用研究[J];現(xiàn)代計算機(專業(yè)版);2013年29期
8 亓開元;韓燕波;趙卓峰;房俊;;支持高并發(fā)數(shù)據(jù)流處理的MapReduce中間結果緩存[J];計算機研究與發(fā)展;2013年01期
9 尚明華;秦磊磊;王風云;劉淑云;張曉艷;;基于Android智能手機的小麥生產(chǎn)風險信息采集系統(tǒng)[J];農(nóng)業(yè)工程學報;2011年05期
10 張濤;李建;康永佳;;多任務高并發(fā)數(shù)據(jù)處理平臺的技術研究[J];網(wǎng)絡安全技術與應用;2010年03期
相關博士學位論文 前2條
1 劉曉茜;云計算數(shù)據(jù)中心結構及其調(diào)度機制研究[D];中國科學技術大學;2011年
2 王永炎;實時事務并發(fā)控制算法優(yōu)化[D];中國科學院研究生院(軟件研究所);2004年
相關碩士學位論文 前10條
1 鄧玉林;基于hadoop大數(shù)據(jù)框架的個性化推薦系統(tǒng)研究與實現(xiàn)[D];電子科技大學;2016年
2 張慧芳;基于動態(tài)反饋的加權最小連接數(shù)服務器負載均衡算法研究[D];華東理工大學;2013年
3 王延武;基于LVS的集群動態(tài)負載均衡算法研究[D];北京化工大學;2012年
4 馮秀玲;云計算環(huán)境下的負載均衡算法的研究與設計[D];北京郵電大學;2012年
5 胡俊;構建分布式系統(tǒng)的關鍵技術研究與實現(xiàn)[D];南京郵電大學;2012年
6 施楊斌;云計算環(huán)境下一種基于虛擬機動態(tài)遷移的負載均衡算法[D];復旦大學;2011年
7 楊錦;異構分布式系統(tǒng)中的負載均衡調(diào)度算法研究[D];湖南大學;2011年
8 萬勇;基于LVS的負載均衡策略算法的研究與改進[D];西南交通大學;2010年
9 劉漢玲;基于Web Service的分布式系統(tǒng)中動態(tài)負載均衡策略的研究與實現(xiàn)[D];哈爾濱工程大學;2010年
10 陳亮;集群負載均衡關鍵技術研究[D];中南大學;2009年
,本文編號:2157441
本文鏈接:http://sikaile.net/jingjilunwen/guojimaoyilunwen/2157441.html