基于非線(xiàn)性插值的小企業(yè)信用評(píng)級(jí)研究
本文關(guān)鍵詞:基于非線(xiàn)性插值的小企業(yè)信用評(píng)級(jí)研究 出處:《大連理工大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 信用評(píng)級(jí) 違約風(fēng)險(xiǎn) 指標(biāo)體系 最優(yōu)權(quán)重 小企業(yè)
【摘要】:小企業(yè)提供了超過(guò)80%的城鎮(zhèn)就業(yè)崗位,創(chuàng)造了52.2%的稅收以及58.5%的國(guó)內(nèi)生產(chǎn)總值,其貸款需求也分別高出大型和中型企業(yè)5.9個(gè)和4.3個(gè)百分點(diǎn)。由于小企業(yè)自身財(cái)務(wù)信息不夠公開(kāi)透明,制度不夠具體規(guī)范,銀行較難把握其真實(shí)發(fā)展?fàn)顩r,導(dǎo)致銀行不愿為小企業(yè)進(jìn)行融資等原因外,商業(yè)銀行缺少一套專(zhuān)門(mén)針對(duì)小企業(yè)貸款的信用評(píng)級(jí)體系也是其中一個(gè)關(guān)鍵的原因,因此亟需構(gòu)建一套適用于小企業(yè)的信用評(píng)級(jí)體系。信用評(píng)級(jí)的本質(zhì)是挖掘評(píng)級(jí)數(shù)據(jù)與違約風(fēng)險(xiǎn)之間的規(guī)律性聯(lián)系,揭示一個(gè)客戶(hù)或一筆債務(wù)的違約風(fēng)險(xiǎn)大小,評(píng)估其償還的可能性及違約損失率大小。信用評(píng)級(jí)對(duì)違約風(fēng)險(xiǎn)識(shí)別能力的強(qiáng)弱直接關(guān)乎金融市場(chǎng)的穩(wěn)定性。2008年次貸危機(jī)的發(fā)生正是源起違約風(fēng)險(xiǎn)識(shí)別錯(cuò)誤,在此之后穆迪等權(quán)威機(jī)構(gòu)的“黑箱”評(píng)級(jí)過(guò)程也備受質(zhì)疑,從沉重的金融危機(jī)中可知,信用評(píng)級(jí)中指標(biāo)篩選、指標(biāo)賦權(quán)、信用等級(jí)確定等關(guān)鍵環(huán)節(jié)均要以識(shí)別違約風(fēng)險(xiǎn)為標(biāo)準(zhǔn),否則無(wú)論多么流行、權(quán)威的信用評(píng)級(jí)體系都是不合理的。因此構(gòu)建一套能夠有效識(shí)別違約風(fēng)險(xiǎn)的信用評(píng)級(jí)體系是至關(guān)重要的;诜蔷(xiàn)性插值的小企業(yè)信用評(píng)級(jí)研究,研究?jī)?nèi)容主要包括以下三部分:小企業(yè)信用評(píng)級(jí)指標(biāo)體系的構(gòu)建、小企業(yè)信用評(píng)分模型的建立,以及小企業(yè)信用評(píng)級(jí)模型的建立。其中,小企業(yè)信用評(píng)級(jí)體系的構(gòu)建系指根據(jù)指標(biāo)對(duì)違約狀態(tài)的鑒別能力越大、越應(yīng)保留的思路,構(gòu)建一套既能反映企業(yè)客戶(hù)償還能力,又能顯著區(qū)分違約狀態(tài)的信用評(píng)價(jià)指標(biāo)體系。小企業(yè)信用評(píng)價(jià)模型是指根據(jù)違約與違約樣本的距離最大為目標(biāo)函數(shù),反推出最優(yōu)信用評(píng)價(jià)方程的權(quán)重,從而建立小企業(yè)信用評(píng)分模型、進(jìn)而得出小企業(yè)的信用得分。小企業(yè)信用評(píng)級(jí)模型的建立是通過(guò)非線(xiàn)性插值方法對(duì)舊數(shù)據(jù)進(jìn)行“加權(quán)平移”,取得與“通過(guò)新、舊全部樣本的統(tǒng)計(jì)規(guī)律挖掘出的另一套指標(biāo)體系”一致的評(píng)級(jí)結(jié)果,確定出小企業(yè)的信用等級(jí)。本論文共分五章。第一章是緒論,對(duì)研究背景及意義進(jìn)行了介紹,并對(duì)國(guó)內(nèi)外相關(guān)研究進(jìn)行了梳理;第二章是基于邏輯回歸顯著性判別的小企業(yè)信用評(píng)級(jí)指標(biāo)體系的構(gòu)建;第三章是基于“違約與非違約樣本距離”最大的信用評(píng)分模型的構(gòu)建;第四章是基于信用得分非線(xiàn)性插值的信用評(píng)級(jí)模型研究;第五章是結(jié)論及展望。本論文的主要工作及創(chuàng)新如下:(1)信用評(píng)級(jí)方面的工作及創(chuàng)新:通過(guò)舊樣本的指標(biāo)數(shù)據(jù)的“加權(quán)平移變換”構(gòu)建信用評(píng)級(jí)模型,保證了當(dāng)采用與“通過(guò)舊樣本的統(tǒng)計(jì)規(guī)律遴選或挖掘出的一套指標(biāo)體系”一模一樣的指標(biāo)體系進(jìn)行新樣本的評(píng)級(jí)時(shí),也能得到與“通過(guò)新、舊全部樣本的統(tǒng)計(jì)規(guī)律挖掘出的另一套指標(biāo)體系”同樣的評(píng)級(jí)結(jié)果.通過(guò)對(duì)舊樣本數(shù)據(jù)進(jìn)行加權(quán)平移變換,構(gòu)建非線(xiàn)性插值信用評(píng)級(jí)模型,在樣本增加的情況下無(wú)需重新進(jìn)行“指標(biāo)遴選、指標(biāo)賦權(quán)、評(píng)級(jí)方程”等繁瑣過(guò)程,僅僅需要把新樣本的指標(biāo)數(shù)據(jù)直接輸入到評(píng)級(jí)方程中,便可得到與“通過(guò)新、舊全部樣本的統(tǒng)計(jì)規(guī)律挖掘出的另一套指標(biāo)體系”一致的評(píng)級(jí)結(jié)果,保證了評(píng)級(jí)指標(biāo)體系的不變,事實(shí)上,任何一家評(píng)級(jí)公司的指標(biāo)體系在相當(dāng)長(zhǎng)一段時(shí)期內(nèi)都是不變的,而不是頻繁地變動(dòng)評(píng)級(jí)指標(biāo)體系。并彌補(bǔ)了現(xiàn)有研究中直接根據(jù)過(guò)去樣本挖掘的指標(biāo)體系確定新客戶(hù)信用等級(jí),忽視加入一個(gè)或多個(gè)樣本后樣本的統(tǒng)計(jì)規(guī)律已經(jīng)發(fā)生變化、舊樣本挖掘的指標(biāo)體系已經(jīng)不適用于確定新樣本的評(píng)級(jí)結(jié)果的問(wèn)題。(2)指標(biāo)賦權(quán)方面的工作及創(chuàng)新:根據(jù)“違約客戶(hù)與非違約客戶(hù)信用得分的組間距離越大、組內(nèi)平均距離越小,則評(píng)價(jià)方程鑒別違約能力越強(qiáng)”的思路構(gòu)建多目標(biāo)規(guī)劃模型,求解最優(yōu)的權(quán)重系數(shù),保證賦權(quán)后的評(píng)價(jià)得分違約鑒別能力最大。通過(guò)違約和非違約客戶(hù)信用得分0的組間距離越大、組內(nèi)平均距離越小,則評(píng)價(jià)得分Sj區(qū)分違約狀態(tài)的能力越強(qiáng)的思路,設(shè)定違約非違約兩類(lèi)樣本的組間距離與組內(nèi)平均距離的比值最大為目標(biāo)函數(shù),以單一賦權(quán)的最大值和最小值為約束條件,構(gòu)建線(xiàn)性規(guī)劃模型。由于目標(biāo)函數(shù)是關(guān)于信用得分Sj的函數(shù),而信用得分Sj是關(guān)于權(quán)重wi的函數(shù),因此目標(biāo)函數(shù)是關(guān)于權(quán)重w,的函數(shù),也就是通過(guò)求解目標(biāo)規(guī)劃的最優(yōu)解即可得到評(píng)價(jià)指標(biāo)權(quán)重wi的最優(yōu)解。保證了求解的指標(biāo)權(quán)重w,能夠最大程度的區(qū)分違約與非違約客戶(hù)的信用得分Sj,改變了現(xiàn)有研究中計(jì)算指標(biāo)權(quán)重的過(guò)程主觀(guān)性較強(qiáng)、無(wú)法讓評(píng)價(jià)模型達(dá)到最強(qiáng)的違約狀態(tài)鑒別能力的弊端。(3)指標(biāo)遴選方面的工作及創(chuàng)新:通過(guò)構(gòu)建評(píng)級(jí)指標(biāo)與違約狀態(tài)之間的邏輯回歸模型,求解每個(gè)指標(biāo)判別違約狀態(tài)的顯著性水平,遴選其中對(duì)違約狀態(tài)影響顯著的指標(biāo),彌補(bǔ)現(xiàn)有小企業(yè)信用評(píng)級(jí)指標(biāo)體系沒(méi)有根據(jù)違約狀態(tài)遴選指標(biāo)、無(wú)法反映指標(biāo)對(duì)違約狀態(tài)影響大小的不足。以違約狀態(tài)yi為因變量,以評(píng)價(jià)指標(biāo)xij為自變量構(gòu)建邏輯回歸模型,求解每個(gè)指標(biāo)對(duì)違約狀態(tài)判別的顯著性水平,即W統(tǒng)計(jì)量檢驗(yàn)概率值sigj。將概率值sigj與預(yù)先給定的顯著水平α進(jìn)行對(duì)比,若sigj≤α,表明第j個(gè)評(píng)價(jià)指標(biāo)xij對(duì)小企業(yè)的違約狀況顯著影響,該指標(biāo)應(yīng)予以保留;反之,若sigjα,則表示第j個(gè)指標(biāo)xij對(duì)小企業(yè)違約狀況顯著不影響,可以被剔除。保證了篩選后保留的指標(biāo)能顯著區(qū)分小企業(yè)的違約狀態(tài),彌補(bǔ)現(xiàn)有小企業(yè)信用評(píng)級(jí)指標(biāo)體系沒(méi)有根據(jù)違約狀態(tài)遴選指標(biāo)、無(wú)法反映指標(biāo)對(duì)違約狀態(tài)影響大小的不足。
[Abstract]:Small enterprises provide more than 80% of urban jobs, creating a 52.2% tax and 58.5% of GDP, the demand for loans were also higher than large and medium-sized enterprises of 5.9 and 4.3 percentage points. Due to the small enterprises financial information is not transparent, the system is not practical regulation, the bank is difficult to grasp the real development the status, cause banks' reluctance to small business financing and other reasons, commercial banks lack a specific small business loan credit rating system is one of the key reasons, the credit rating system so it is necessary to construct a set of suitable for small enterprises. The essence of credit rating and default rating data mining is the relationship of risk between, revealing a customer or a debt default risk, assess the likelihood of repayment and default loss rate. The credit rating of the default risk identification The strength of the force is directly related to the stability of financial markets.2008 the subprime mortgage crisis is the origin of the risk of default false recognition, after Moodie, the authority of the "black box" rating process has been questioned, as can be seen from the heavy financial crisis, credit rating index selection, index weight, credit rating to determine the key link to identify the risk of default as the standard, otherwise no matter how popular, the credit rating system of authority are not reasonable. So build a credit rating system can effectively identify the risk of default is very important. The research on credit rating of small enterprises based on nonlinear interpolation, the research content mainly includes the following three parts: the construction of the credit rating index system small enterprises, establish the credit scoring model for small businesses, and to establish a credit rating model for small businesses. Among them, the credit rating system for small enterprises Construction refers to the ability to identify the default state according to the index is bigger, more should be reserved for the construction of a set of ideas, which can reflect the enterprise customers the ability to repay, and can significantly distinguish default credit evaluation index system. The small enterprise credit evaluation model is based on breach of contract and breach of the sample distance as the objective function, anti the launch weight optimal credit evaluation equation, so as to establish a credit scoring model, and then draw the small business credit score. To establish a credit rating model of small enterprises is "weighted translation" of old data by nonlinear interpolation method, and the adoption of new, another set of index system of "statistical law of the whole sample of old mining the same rating results, determine the small enterprise credit rating. This paper consists of five chapters. The first chapter is the introduction, the research background and significance are introduced, and the domestic and foreign. Research carried out; the second chapter is the construction of logic regression discriminant small enterprise credit rating index system based on; the third chapter is based on the "default and non default sample from" the biggest credit scoring model construction; the fourth chapter is the research on the model of credit rating credit score based on the nonlinear interpolation; the fifth chapter is the conclusion and prospect. The main work and innovation are as follows: (1) the work and innovation of credit ratings: the old sample index data of "weighted translation" to construct a credit rating model, guaranteed when using and selection or dig out the statistics law old samples a set of index system index system the new sample rating as like as two peas, and also can get through the new, another set of index system of "statistical law of the whole sample old mined the same rating results. Weighted by the translation of the old data, construct the nonlinear interpolation model of credit rating, in the sample increases without re "index selection, index weight, rating equation and other complicated process, only need to index data of the new sample directly into the rating equation, we can get through the new, and" another set of index system of "statistical law old total samples excavated consistent rating results, the rating index system unchanged, in fact, the index system of any Rating firm are unchanged in quite a long period of time, rather than the frequent change of rating index system and make up the existing research. In the past the sample directly according to the mining index system to identify new customer credit rating, ignore to one or more of the sample after sample statistics has changed, the old mining refers to the sample Standard system is not suitable to determine the new sample rating results. (2) determine the work and innovation aspects: according to the "default and non default customer customer credit score between the groups is bigger, in the group average distance is small, the multi-objective programming model to construct the evaluation equation of differential default stronger" the idea of solving the optimal weight coefficient, ensure that the evaluation score after weighting the greatest discriminating power. By default default and non default credit score of 0 groups within the group average distance is, the smaller the distance, the evaluation score of Sj between default state more ideas, set the default non default two the ratio of the average distance between the sample group and the distance within the group as the objective function, the maximum value and the minimum value of the weighted single constraint conditions of linear programming model. The objective function is a function of the credit score of Sj However, the credit score Sj is a function of the weight of the WI, so the objective function is the weight of about W, the function is through the optimal solution can be obtained by the optimal target planning evaluation index weight solution of wi. To ensure that the w index weights, can distinguish the maximum default and non default client's credit score Sj the process of change, the subjective index weight calculation of strong, can let the evaluation model get the strongest default ability to identify defects. (3) the index selection work and Innovation: by and against the construction of evaluation index about the state of the logic regression model, the significant level of each index for default judgment. The selection of the indicators of the impact of default status significantly, make up the credit rating index system according to the existing small businesses do not have the default selection index can not reflect the index of the default state. The size of the ring. The dependent variable Yi as the default state, the evaluation index Xij as independent variables to construct a logistic regression model, for each index of the default level state identification, namely W statistic probability probability value sigj and value sigj. will be given a significant contrast, if sigj is less than or equal to alpha, that article the j index of Xij significant effect on the default status of small enterprises, the index should be retained; on the other hand, if the sigj alpha, said the j Xij index for small businesses do not affect significantly the default status, can be removed. The screen is retained after the index can significantly distinguish the default state of small enterprises, make up for the credit rating index system according to the existing small businesses do not have the default selection index can not reflect the index of the size of the state. The default problem
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:F276.3;F832.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊宏;;企業(yè)信用評(píng)級(jí)在銀行信貸登記咨詢(xún)制度實(shí)施工作中的必要性研究[J];云南金融;2001年06期
2 林正平;現(xiàn)代經(jīng)濟(jì)呼喚企業(yè)信用評(píng)級(jí)[J];福建金融;2002年03期
3 李世龍;企業(yè)信用評(píng)級(jí)的作用及提高信用級(jí)別的對(duì)策[J];當(dāng)代石油石化;2004年02期
4 ;市場(chǎng)經(jīng)濟(jì)呼喚企業(yè)信用評(píng)級(jí)[J];西安金融;2004年08期
5 孫哲;;開(kāi)展企業(yè)信用評(píng)級(jí) 改善金融生態(tài)環(huán)境[J];西安金融;2006年03期
6 付健健;;保險(xiǎn)企業(yè)信用評(píng)級(jí)的有效性分析——一個(gè)交易成本的視角[J];海南金融;2006年08期
7 中國(guó)人民銀行伊犁州中心支行課題組;高策;;對(duì)伊犁州借款企業(yè)信用評(píng)級(jí)情況的調(diào)查與思考[J];西部金融;2007年10期
8 劉國(guó)強(qiáng);;對(duì)開(kāi)展企業(yè)信用評(píng)級(jí)的思考[J];財(cái)政監(jiān)督;2008年18期
9 李媛;劉計(jì)策;;中小企業(yè)信用評(píng)級(jí)工作中的問(wèn)題與建議[J];金融縱橫;2010年12期
10 劉計(jì)策;;中小企業(yè)信用評(píng)級(jí)工作中的問(wèn)題及建議[J];征信;2011年01期
相關(guān)會(huì)議論文 前2條
1 侯森;王淑慧;祝琳;;企業(yè)信用評(píng)級(jí)的方法探討[A];2012管理創(chuàng)新、智能科技與經(jīng)濟(jì)發(fā)展研討會(huì)論文集[C];2012年
2 龐素琳;汪壽陽(yáng);;企業(yè)交叉信用評(píng)級(jí)模型研究[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前10條
1 實(shí)習(xí)記者 周穎;企業(yè)信用評(píng)級(jí)急!急!急![N];中國(guó)信息報(bào);2001年
2 中國(guó)人民銀行古縣支行 邢紅玉 中國(guó)人民銀行洪洞縣支行 王瑞學(xué);對(duì)企業(yè)信用評(píng)級(jí)實(shí)行內(nèi)外部結(jié)合的幾點(diǎn)思考[N];山西經(jīng)濟(jì)日?qǐng)?bào);2013年
3 記者 雷和平 通訊員 肖瑞婷;陜西省開(kāi)展企業(yè)信用評(píng)級(jí)試點(diǎn)[N];金融時(shí)報(bào);2006年
4 蘇細(xì)福 吳迪;企業(yè)信用評(píng)級(jí)亟待規(guī)范[N];金融時(shí)報(bào);2006年
5 記者 雷和平邋通訊員 高利安 龐正陽(yáng);西安中小企業(yè)信用評(píng)級(jí)啟動(dòng)試點(diǎn)[N];金融時(shí)報(bào);2007年
6 賀秋;江西試行企業(yè)信用評(píng)級(jí)[N];中國(guó)財(cái)經(jīng)報(bào);2007年
7 孫傳卿;商南啟動(dòng)企業(yè)信用評(píng)級(jí)工作[N];商洛日?qǐng)?bào);2007年
8 高美梅;中小企業(yè)信用評(píng)級(jí)首次“發(fā)榜”[N];無(wú)錫日?qǐng)?bào);2008年
9 記者 錢(qián)蘭邋通訊員 劉榮浩;我市開(kāi)展中小企業(yè)信用評(píng)級(jí)[N];泰州日?qǐng)?bào);2008年
10 記者 喬佳妮;我省首次開(kāi)展企業(yè)信用評(píng)級(jí)等級(jí)[N];陜西日?qǐng)?bào);2013年
相關(guān)博士學(xué)位論文 前2條
1 宮劍;民營(yíng)企業(yè)信用評(píng)級(jí)研究[D];吉林大學(xué);2008年
2 石寶峰;基于違約金字塔原理的小企業(yè)信用評(píng)級(jí)模型研究[D];大連理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 李夏玫;內(nèi)貿(mào)險(xiǎn)中的國(guó)內(nèi)貿(mào)易買(mǎi)方企業(yè)信用評(píng)級(jí)指標(biāo)體系研究[D];對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué);2015年
2 章思琴;基于多級(jí)模糊綜合評(píng)價(jià)模型的物流企業(yè)信用評(píng)級(jí)應(yīng)用研究[D];南昌大學(xué);2015年
3 許樹(shù);基于顯著區(qū)分違約狀態(tài)的小企業(yè)信用評(píng)級(jí)研究[D];大連理工大學(xué);2015年
4 金云;海東地區(qū)中小企業(yè)信用評(píng)級(jí)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京工業(yè)大學(xué);2014年
5 朱元梅;我國(guó)小微企業(yè)信用評(píng)級(jí)研究[D];電子科技大學(xué);2014年
6 鄒朋朋;中小企業(yè)信用評(píng)級(jí)研究—模型與實(shí)證[D];安徽師范大學(xué);2015年
7 梁迪;小微企業(yè)信用評(píng)級(jí)指標(biāo)體系研究[D];天津財(cái)經(jīng)大學(xué);2015年
8 宋爽;汽車(chē)企業(yè)信用評(píng)級(jí)模型構(gòu)建研究[D];天津財(cái)經(jīng)大學(xué);2015年
9 趙競(jìng)成;中小企業(yè)信用評(píng)級(jí)模型構(gòu)建及應(yīng)用[D];天津財(cái)經(jīng)大學(xué);2014年
10 李雷;我國(guó)小微企業(yè)信用評(píng)級(jí)方法研究[D];首都經(jīng)濟(jì)貿(mào)易大學(xué);2016年
,本文編號(hào):1364646
本文鏈接:http://sikaile.net/jingjilunwen/guojijinrong/1364646.html