天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于C4.5算法分類器的電力客戶信用評(píng)級(jí)模型研究

發(fā)布時(shí)間:2018-07-01 10:34

  本文選題:C.算法 + 決策樹(shù) ; 參考:《通化師范學(xué)院學(xué)報(bào)》2015年12期


【摘要】:電力客戶巨額欠費(fèi)是電力公司面臨的一個(gè)難題,該文采用C4.5算法分類器對(duì)電力系統(tǒng)客戶進(jìn)行信用評(píng)級(jí).從電力系統(tǒng)大規(guī)模的繳費(fèi)數(shù)據(jù)中提取訓(xùn)練樣本,利用C4.5算法進(jìn)行學(xué)習(xí)得到分類規(guī)則,然后將這些規(guī)則應(yīng)用于用電客戶的信譽(yù)評(píng)級(jí),從而更好地管理客戶繳費(fèi)行為,為電力系統(tǒng)的管理運(yùn)營(yíng)提供數(shù)據(jù)支持.實(shí)驗(yàn)結(jié)果表明,對(duì)于不同的指標(biāo)體系和不同的分類樣本,都可以獲得較好的分類效果.
[Abstract]:The huge arrears of electricity customers is a difficult problem faced by power companies. In this paper, C4.5 algorithm classifier is used for credit rating of power system customers. Training samples are extracted from large-scale payment data of power system, and C4.5 algorithm is used to learn the classification rules. Then, these rules are applied to the credit rating of electricity customers, so as to better manage the customer's contribution behavior. Provide data support for power system management and operation. The experimental results show that better classification results can be obtained for different index systems and different classification samples.
【作者單位】: 安徽工商職業(yè)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金面上項(xiàng)目“基于靈敏性分析和隱因素發(fā)現(xiàn)的復(fù)雜系統(tǒng)脆弱性演化機(jī)制研究”(61175051)
【分類號(hào)】:F426.61;F274


本文編號(hào):2087498

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/gongyejingjilunwen/2087498.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9c23e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com