基于主題的文本情感分類模型研究
[Abstract]:With the popularity of WEB2.0 technology and the growth of e-commerce applications, it is easier for people to publish their opinions and suggestions on goods on the website. Extracting and analyzing these emotional information can help enterprises to improve their products and guide users to make better choices. Therefore, emotional classification has become a research hotspot. First of all, this paper studies and discusses some theories and tools involved in dealing with subjective text information, and then builds a SO-LDA model based on the original potential Delikley distribution (LDA) model. Emotional and non-emotional words are identified by means of affective corpus and word segmentation tools, and SO-LDA model is used for text representation. Finally, SVM classifier is used to classify affective tendency. The work of this paper mainly includes the following two aspects: (1) the emotional text representation model and related techniques are studied, and an emotional theme model and other thematic models based on LDA are proposed. Before classification of text emotion orientation, the first thing to do is to build a document representation model for subjective text. Because the traditional VSM vector space model is limited to high dimension and sparsity, the LDA topic model is applied in this paper. In this paper, we improve LDA and get a new text representation model: SO-LDA topic model. It is applied to the field of text affective preference classification. (2) LDA and SO-LDA models are used to solve the problem of text affective classification, and the related affective corpus is used to test. Experiment with both hotel and computer themes in different number of topics. The experimental results show that the experimental SO-LDA model is more accurate than the previous LDA model. In the experiment, the SO-LDA model is used to model the obtained text, and the words in the text are divided into two categories: affective word and non-emotional word. Words are extracted according to the underlying emotional topics and other topics in the text, then the parameters of the SO-LDA model are estimated by Gibbs sampling algorithm, and then classified. Experiments show that SO-LDA is more effective than LDA in emotional classification.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 傅向華;劉國(guó);郭巖巖;郭武彪;;中文博客多方面話題情感分析研究[J];中文信息學(xué)報(bào);2013年01期
2 林政;譚松波;程學(xué)旗;;基于情感關(guān)鍵句抽取的情感分類研究[J];計(jì)算機(jī)研究與發(fā)展;2012年11期
3 馮時(shí);付永陳;陽鋒;王大玲;張一飛;;基于依存句法的博文情感傾向分析研究[J];計(jì)算機(jī)研究與發(fā)展;2012年11期
4 李本陽;關(guān)毅;董喜雙;李生;;基于單層標(biāo)注級(jí)聯(lián)模型的篇章情感傾向分析[J];中文信息學(xué)報(bào);2012年04期
5 謝麗星;周明;孫茂松;;基于層次結(jié)構(gòu)的多策略中文微博情感分析和特征抽取[J];中文信息學(xué)報(bào);2012年01期
6 陶富民;高軍;王騰蛟;周凱;;面向話題的新聞評(píng)論的情感特征選取[J];中文信息學(xué)報(bào);2010年03期
7 徐軍;丁宇新;王曉龍;;使用機(jī)器學(xué)習(xí)方法進(jìn)行新聞的情感自動(dòng)分類[J];中文信息學(xué)報(bào);2007年06期
8 唐慧豐;譚松波;程學(xué)旗;;基于監(jiān)督學(xué)習(xí)的中文情感分類技術(shù)比較研究[J];中文信息學(xué)報(bào);2007年06期
9 王根;趙軍;;基于多重冗余標(biāo)記CRFs的句子情感分析研究[J];中文信息學(xué)報(bào);2007年05期
10 張一彬;周杰;邊肇祺;郭軍;;基于內(nèi)容的音頻與音樂分析綜述[J];計(jì)算機(jī)學(xué)報(bào);2007年05期
,本文編號(hào):2338005
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2338005.html